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There is considerable interest in understanding the relation between random-matrix ensembles and quantum
chaotic systems in the context of the universality of energy-level correlations. In this connection, while
Gaussian ensembles of random matrices have been studied extensively, not much is known about ensembles
with non-Gaussian weight functions. Dyson has shown thahilesel correlation functions can be expressed
in terms of a kernel function involving orthogonal and skew-orthogonal polynomials—orthogonal for matrix
ensembles with unitary invariance and skew orthogonal for ensembles with orthogonal and symplectic invari-
ances. We have obtained the following resuli$.Skew-orthogonal polynomials of both types are derived for
the Jacobi class of weight functions including the limiting cases of associated Laguerre and Hermite
Gaussiahn (2) Matrix-integral representations are given for the general weight functi@ndsymptotic forms
of the polynomials are obtained rigorously for the Jacobi class and in the form of an ansatz for the general case.
(4) For the three types of ensembles, theymptotig n-level correlation functions with appropriate scaling are
shown to be universal, being independent of the weight function and location in the spectrum, and identical
with the well-known Gaussian results. This provides a rigorous justification for the universality of the Gaussian
ensemble results observed in quantum chaotic systems. As expected, the level density is not universal.
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I. INTRODUCTION symplectic ensembles—OE, UE, and SE in short. A further
mathematical requirement that the matrix weight function be
Universality of energy-level fluctuationg.e., deviations separable in eigenvalues would complete the definition of the
from local uniformity) is observed in a wide variety of quan- ensembles that we consider. It turns out that, with the Gauss-
tum chaotic systems. Spectra of complex nuclei, atoms, molan weight functions, the distinct matrix elements are statis-
ecules, disordered mesoscopic systems, and microwave cavieally independent, but not so with the other weight func-
ties provide experimental verification of the universality. tions. It is then possible to deal with matrix ensembles
Numerical and semiclassical studies of chaotic systems withaving a specified level density,10]. Such ensembles will
few degrees of freedom as well as studies of zeros of thee of direct relevance to many-body systems such as com-
Riemann zeta function confirm the same. The observed fluglex nuclei[2] and mesoscopic systers,5].
tuations are in close agreement with the analytic results of Dyson[7] has shown that the eigenvalue-density correla-
the Gaussian ensembles of random matridess]. tion functions can be written in terms of standard orthogonal
The Gaussian ensembles have been studied as mathemagiplynomials in the unitary case, and in terms of certain
cal tools rather than as physical models. For example, thekew-orthogonal polynomials in the orthogonal and sym-
predicted level density, viz., the “semicircle,” does not cor- plectic cases. A major part of the paper will be concerned
respond to any known physical system. It is therefore ofwith the derivation of the skew-orthogonal polynomials for
interest[7] to study matrix ensembles with non-Gaussianthe Jacobi class of weight functions, giving thereby generali-
weight functions, which give very different level densities. zations of some initial results of Mehf&]. Their asymptotic
Our main aim in this paper is to establish rigorously theforms will then establish the universality for the Jacobi en-
universal behavior of energy-level fluctuations for a widesembles, as reported earlier in the unitary case by Fox and
class of matrix ensembles. This would provide a firm justifi-Kahn[11]. For more general weight functions, we shall de-
cation for the universality found in physical systems. Therive matrix-integral representations of the polynomials,
second aim of this paper is to develop the theory of skewwhich are more amenable to asymptotic studiiez 13. Fi-
orthogonal polynomials, necessary, as shown by DyZ¢8, nally, we shall propose an ansatz for the asymptotic forms of
for such a study. A brief account of this work has been giverthe polynomials, as in Ref14], whereby universality will be
elsewherd9]. established more generally. It should be emphasized that the
As in the Gaussian case, we follow the threefold classifithree types of the universal energy-level fluctuations will not
cation to take account of the fundamental symmetries of thenly be independent of the weight function, but also inde-
system, and study ensembles of three types of matrices, vipendent of the location in the spectrifstationarity” [15]).
real symmetric, complex Hermitian, and self-dual quaterniorFor other recent work on non-Gaussian matrix ensembles,
real[1]. The three types of ensembles will be characterizedve refer to Refs[4,5] and references therein.
by the parameteg, with values 1,2,4, respectively, denoting  In Sec. Il, we give the basic definitions along with a dis-
the number of real “sites” in each off-diagonal matrix ele- cussion of level densities in the general ensembles and a
ment. The ensembles will be invariant under orthogonal, unibrief review of the(asymptoti¢ correlation functions for the
tary, and symplectic transformations respectively in the thre&aussian ensembles. Sections Ill, IV, V, and VI are con-
cases, being therefore referred to as orthogonal, unitary argkrned with the correlation functions for the Jacobi en-
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semblegiincluding the limiting cases of associated Laguerrebeing the mean level spacingxafor largeN. To describe the
and Hermite or Gaussianrespectively, for UE, OHeven energy level fluctuations in the neighborhoodxpfwe first
dimensiong OE (odd dimensions and SE. Section VII “unfold” the spectrum locally by

gives the matrix-integral representations of the polynomials

and the ansatz for the asymptotic forms. Our results are sum- Xj=x+r;D(x), j=12,...n. (2.7
marized in the concluding section. Then

IIl. LEVEL DENSITY AND CORRELATION FUNCTIONS Ry(F1:Fs + oo fiX)= lim (D(X))"Ry(Xq, - - - Xp)

N—oo

We consider ensembles dFdimensional Hermitian ma- 2.8
trices (H) with the probability distributior]7] '
is then-level correlation function for the unfolded spectra. In

Pgn(H)dH=C; \exd —tru(H)]dH, (2.1 the cases we consider in this papRy, will be independent
] ) of x, being thus stationary.
where the parametes, defined in Sec. I, denotes whethér The Jacobi weight function, the main topic of concern in

is real symmetric, complex Hermitian or quaternion-realgecs, 1-VI, is given by
self-dual,dH being the infinitesimal volume element in the

space of these matrices. The matrix functigii) is defined Wap=(1—-x)3(1+x)°, [x|<1,
by the power expansion of the functiar{z), andCg y is
fixed by the normalization condition. The Gaussian =0, |x|>1, (2.9

ensembles—GOE, GUE, and GSE, respectively, Br

=1,2,4—are obtained with(z)=z%/2v?, v being a scale Wwherea>—1, b>—1. The classicalorthogonal polyno-
parameter. From the invariance of the ensembles, the joinmials[16] derive from the Jacobi weight function. Thus, for
probability density of the eigenvalueg(,x,, . .. Xy) isob- a=b, we have the Gegenbauer, which includes Legendre for
tained easily[7], a=b=0 and the two Chebyshev fa=b=+3. Also by
rescalingx and then lettinga=b— o0, we get the Hermite or
Gaussian weight function,

N
Pan(X1, - XN)=CgnlAn(Xq, - .. 1XN)|’BH w(X;),
=1 wg(X)=exp(— Bx?/2), (2.10

(2.2
where 8 has been inserted in the exponent to make corre-
spondence with the results of REL]. Moreover, by shifting
the origin, then rescaling,w, and lettingb—o we get the

An(Xg, oo X0 =11 (X=X (2.3  associated Laguerre weight function,

1<k

wherecg y is another normalization constant,

Wy(X)=x%"%, x>0,

is the Vandermonde determinant, and
=0, x<0, (2.11
w(X)=exd —u(x)] (2.9

where a>—1. Besides the Jacobi, we shall also consider
is the weight function. It is sometimes helpful to think of the [14] in Sec. VIl the case when the “potentialti(x)
ensemble distributiori2.1) as coming from an information = —Inw(x) is a low-order polynomial.
theory approach{10] or as the equilibrium density of a ~ We now give a general procedure for deriving the level
Brownian-motion procegd]; in the former case the function density for largeN. Since
u (and hence the weight function) comes from the con-

straints on the ensemble, while in the latter cagsays the IP(Xy, - - - Xn) _» 1 W' (Xy) P(x %)
role of a potential. X, 24 XX —W(Xl) 1o oo XND,
The n-eigenvalue om-level density correlation function (2.12

[1,7 R, (forn=1,2,3 ... ,N) is defined by
we find from Eq.(2.5 an exact hierarchic set of relations

N! linking R, to R,,4+; [17-19. Forn=1, this gives
Rn(Xl, ...,Xn)zﬁf an_,.l...deN
(N=n)! R [Ro(xy) . W(X)
XP(X1, « o XN (2.5 IX _’Bj X—y dy+ w(X) Ri(x). (213

and gives the probability density of findingeigenvalues at For largeN, the integral on the right-hand side can be re-
X1,Xs, ... Xy, irrespective of the positions of the remaining placed by a principal-value integral involving,(X,y)

eigenvaluesR;(x) is the level density, with ~R;(X)R4(y); moreover dR;/dx can be dropped. Both
these approximations can be rigorously justified from the
D(X)=[Ry(x)] ! (2.6)  behavior ofR; andR, for largeN. We thus find[7,5,17
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w’(x)
+
w(x)

a result that could also be derived directly by maximizing
InP. Note that Eq(2.14) is valid whenw+ 0. Moreover,R;

1(Y)

BR(X )J Ri(x)=0, (2.19

is zero whenw=0 but it can also be zero elsewhere as, for
example, in the Gaussian and Laguerre cases below. We

solve below the integral equatid@.14), using the resolvent

[20]
G(z)= f Raly) Y, (2.19
which satisfies
G(x+i0)=f Ff(l_(y) —i7Ry(x). (216

For the Jacobi weight functiof2.9), one needs to con-
sider carefully the singularities of/'/w at x==*=1. Since
R;(x)=0 for |x|>1, andO(N) for |x|<1, we find from Eq.
(2.14), after multiplication by (+x?)/(z—x) and integra-
tion overx, that

1
f dx
-1

terms ignored being of lower order M. The expression on
the left can be written as

(1-x3) Ry(X)
Z—X

Ri(y)
X=y

=0, (2.17)

-1

jf Rl(X)Rl(y)<l x2 1_y2>
X—y Z—-X z-y
Ri(X)Ry(y
ff dxdy (z ) (2= y){l zZ(x+y)+xy}
—11 2)G? N 2.1
_E( -z t5 (2.18
Thus, sinceG(z)~N/z for large|z|, we get
G(2)= N (2.19
(Z_\/Ez—_l’ .
and
R N [x|<1
l(x)_w\/mz! X )
=0, |x|>1, (2.20

the result being the same for all finite values of the param-
etersa,b. Note that the level density becomes indefinitely

large at the end points. For the associated Laguerre weight

function (2.11), R;(x) =0 for x<0, andw’/w has a singu-
larity at x=0. In this case we find from Eq2.14), after
multiplication by x/(z—x), integration overx, and neglect-
ing the (lower ordej aG(z) term, that
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xRy (x ) XRy(x) Rl(y)
S e
(2.22)
so that
BzG?—22G+2N=0, (2.22
giving
Glz)— —- L 72BN (2.23
(Z)_B 3 o )
and
1 2BN—X
Rl(x)——B  2BN>x>0
=0, x<0 or x>2pN, (2.24

again independent of the paramegebut different from the
Jacobi resul{2.20. Finally, in the Gaussian cag$e0], we
get from Egs(2.10, (2.14),

* XRl(X Ry (x) Rl(Y)
[T e [T a2y,
(2.29
implying
G2-2zG+2N=0. (2.26
Thus
G(z)=z— JZZ—2N, (2.27
and
Rl(x)zi\/ZN—xi, Ix|< V2N,
=0, |x|>2N, (2.28

the last result being the well-known semicircular denglfly
One can similarly obtain results f@&(z) and Ry(x) when
u(x) is O(N) and a low-order polynomial; this gives results
different from above.

The polynomial methods discussed in Secs. llI-VI will
confirm the above density results. We shall also find that the
unfolded correlation functionR, are universal, being inde-
pendent of the weight function and location in the spectrum.
We summarize here the results Ry, first obtained for the
Gaussian and circular ensemb|24,22,7,1. We have for the
three types of ensembles

) =Qdefog(rj—rilj k=1

={defog(r;— rk)]}llz,

RP(ry, ...

(2.29

where
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S(r) O h; being the normalization constant. Using the Christoffel-
oa(r)= : (230 Darboux formulg16], we can perform the sum in E¢B.2)
0 S to obtain
r)= , 213 2) _ N—1 [ PN PN-1(Y) = Pn(Y) P-1(X)
7:(r) (l(r)—e(r) S(r) 230 sPoy)= hno1 K x—y ’

(3.9

(232 whereky is the coefficient ofxN in py(x). This form is
useful in deriving the larg& behavior ofKy. The level
density is given by

S(2r) D(2r)>

"4(”:( I(2r)  S(2r)

S(r)=sin(ar)/ar, (2.33
R, (x) =S (x,%), 3.
D(r)=dS(r)/dr, (2.39 100 =S (x%) 339
and, therefore, from Eq2.8), S{)(x,y)/S{)(x,x) for large
I(r)= er(r Ndr’, (2.35 Nwill PZ? required to calculate the unfolded correlation func-
0 tion Ry
For the Jacobi weight functiof2.9), the p;(x) are the
e(r)=r/2r|. (236 Jacobi polynomial®$*°(x) [16], with
The quaternion determinan@(deb in Eq. (2.29 has a de- ab 23tb+l  T(j+a+1)I(j+b+1)
terminantlike expansion in terms of the quaternion matrix hi" :(2j+a+ b+1) T(j+1)I(j+a+tb+1)’ (3.6
elements og(rj—ry) of the n-dimensional “self-dual”
guaternion matrix. In fact, it is square root of the 1/[2j+a+b
(2n)-dimensional ordinary determinant, as given in the last k?rb:f ] . (3.7
step of Eq.(2.29; for example, forB=2, R, is simply 2! J

defS(r;—ry)]. The function S(r), from which all other _ o _
functions above derive, will be seen in the following sectionsFor largej anq finitea,b with x=cos# (0<#<m), we have
as the asymptotic form of a kernel function involving or- the asymptotic form

thogonal polynomials foB=2 and skew-orthogonal polyno- b1 P

mials for 3=1,4. The universality oR, will follow from (h3P) "M wy () YR30 (x)

that of the asymptotic kernel functid®(r). >
=\/— cos{ j
mSsing

]+
Ill. JACOBI UNITARY ENSEMBLES

at+b+1
2

L
ar2

6_

l

. . . 3.8
The unitary ensemble is easiest to study because the cor- 38

relation functions can be written in terms of the orthogonalyhere we have used Ref16] and h}'xbzz(a+b)j—1_ Here,
polynomials. Fox and KahfiL1] showed the universality for anq in other asymptotic results below, it should be under-
the Jacobi and Laguerre we|ght_fuqct|ons in the region of the;god that terms of lower order infor fixed 6 are being
spectrum where the level density is “flat.” We follow here jgnored. The asymptotic form is valid for allexcept within
the method of Ref[lS]_to extend the universality to all re- 5 rangeO(j 1) of the end points(Also, in Laguerre and
gions where the density is finite and nonzero. Some of th¢yemite cases below, the asymptotic polynomials fall off ex-
methods used here will also be helpful in the following S€C-ponentially outside the intervals specifieNow, substituting

tions. . . . . Egs.(3.6—(3.9) in Eq. (3.4 we find, for largeN,
The correlation functions in the unitary cas@=2) can
be written ad7] sin(NA 6) sir{N(l—xZ)‘llex]
SPxy) = = . (3.9

T wAOsing A
Ra(Xq, - - - X)) =def SP(x %0 jker,. . nr (3D masin max

where we have takery=x+Ax=cos@+A6) with Ad

(2) i i
whereSy”(x.y) is the kernel function —O(L/N). Thus, withA §— 0, we have the level density
N—-1
SPxy)=wx) >, (h) pop(y). (32 _ N _ N
= i i R1(X) asng 1l [x|<1, (3.10

Thep;(x) are orthogonal polynomials of ordedefined with

derived earlie(2.20. M
respect to the weight functiow(x) by as derived earlie(2.20. Moreover,

. S§\,2)(x,y)_sin7rr_
f P, (0 POW(X) dx=h; 5, (3.3 M P ) @319
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where r=AxR;(x)=—m NA6. [When A9=0(1), the
above limit is zerd. Using Egs.(3.1), (3.10, and (3.1 in

Eqg. (2.8) we rederive the unfolded correlation function of

Egs.(2.29, (2.30. Note that the final result foR(?) is inde-
pendent ofk, as well asa,b, proving thereby the stationarity
as well as universality for this class of weight function.

For the associated Laguerre weight functi@all), the
p;(x) are the associated Laguerre polynomiaf¥(x) [16],
with

I'(j+a+1)

(a) —

; (3.12

(3.13

For large j and finite a with x=(4j+2a+2)cogé,
0<6<m/2, we havd 16]

(h{) ™ w, (0 TV2L{P (%)
(-1

=————————5in

V2] sin6 cosé

) 3
X(sin260—260)+ e

[j+(a+1)/2]

: (3.14

whereh{®=j2. For givenx, 6 depends ofj; for example,
0,— 0;=1==(2j tang;,) . Then with 6=6;, we can also
write

(@) Y wy(x)1M2L 2 (x)
(-t
= —— SINn

V2] sin6 cosé

) 3w
X (sin20—260)+20+ T}

[j+(a+1)/2]

(3.15

Using Eqgs(3.14), (3.15 in Eq. (3.4) with =6, we get for
largeN

Sin(4NA 0 sirf6)
8m7NA 6sinf cosd

S@x,y)=

1
sin = (4N —x) Y227 x
= , (3106

mTAX

where x=4N co$6, y=x+Ax=4Ncog(#+Ad), and A@
=0O(1/N). With A6—0, we have the level density

tand 1 [4AN—X
R)= 5 =2 N T

0<x<4N, (3.17

as in Eq. (2.29 with B=2, while, with r=AxR;(x)

=—x 14N A6 sirf6, we have theS(r) function as in Eq.
(3.12). This proves stationarity and universalityRf in the
associated Laguerre case.

PHYSICAL REVIEW E 65 046221

For the Gaussian weight functidg.10 (with 8=2), the
pj(x) are the Hermite polynomialsl6] H;(x), with

(3.18
(3.19

h;= w'221j1,
kj= 2l
having the asymptotic forril6]

(hj)fl/2e7X2/2Hj (X)

1 1/4 ' . ' 37
= —| si (J/2+1/4)(5|n20—2¢9)+7

Jarsing\)
(3.20

for x=(2j+1)Y?cosf, 0<@#<m. As in the Laguerre case,

with 6= 6;, we can also write
2 1/4
—) sir{ (jl2+1/4)

ﬁﬁﬁ“

) 3
X(sin20—26)=* 6+ T

(hjxl)illzeileijxl(X):

(3.21

where we have used agaih— ;== (2] tang;) "*. Using
0 and 6+ A 6 for x,y with j=N, we find[15]

2) Sin(2NA@sirtd)  sin (2N—x?)2Ax]
SN (le): R = ’
m2NA 6 'sin 6 TAX
(3.22
giving
2N V2N—x?
Ri(x)= \/:sin0= . |x|<\/ﬁ, (3.23

as in Eq.(2.28 andS(r) as in EQ.(3.11) with r=AxR;(x)
=— 7 12NAgsir?e.

The orthogonal polynomials and their asymptotic forms
will be needed to work out the skew-orthogonal polynomials
and their asymptotic forms in the following sections. We also
remark that, instead of the Christoffel-Darboux summation,
we could have directly obtained the asympt@¢(x,y) by
using the asymptotic forms of the polynomials in E§.2)
and replacing the sum by an integral oyéor fixed x,y; this
procedure will be useful in the skew-orthogonal cases. More-
over, the asymptotic form§3.8), (3.14), and (3.20 of the
polynomials, when written in terms &,, are generalizable;
see Sec. VILI.

IV. JACOBI ORTHOGONAL ENSEMBLES (EVEN
DIMENSION)

Dyson[7,8] has given formal expressions for the correla-
tion functions, analogous to Eq$3.1)—(3.3), for the B
=1,4 cases. These are given in terms of skew-orthogonal
polynomials. There are three types of skew-orthogonal poly-
nomials needed, corresponding ®=1 (evenN case,
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B=1 (oddN case, and B=4. The universality of correla- N-1 &S(Nl)(x,y)
tion functions will follow from the asymptotic properties of D{I(x,y)=— X (9;) Zjkd;(X) i(y) = — —
these polynomials. We consider in this section the first type 1k=0 y
for the Jacobi family. (4.8
The skew-orthogonal polynomiadg(x) of orderj, appro- N—1
priate for =1 (evenN case, are defined by |&1)(X,y):jéo (gj)ilzjklr//j(x) Bi(y)
J f g;(X)a(y)w(x)w(y)e(x—y)dxdy=g;Zj, o
4.1) zf e(Xx—2)Sy’(z,y)dz, (4.9
whereZ is the canonical antisymmetric matrix with matrix €(X,y)=e(x—y). (4.10
elements
Zy=1, j=even, k=j+1, In terms of the quaternion kernel,
. , s p®
=-1, j=odd, k=j-1, _ N N
J J QN(XiY)_( |§\jl)—6 S&‘l)f)v (4.11
=0, otherwise, (4.2
i . o the correlation functions ford=1,N=even) are given by
wherej,k=0,1,2 ..., andg; is the normalization constant
with the propertyg,m=9oms+ 1. The antisymmetric integral in Ra(X1, .. X)) =Qdef Qn(X; X j k=1, n:
Eq. (4.1 is nonzero for each pair of polynomiads, ,qy + 1, (4.12

implying thereby separate patterns for even- and odd-order

polynomials. Apart from the normalization, the even-orderwith Q det defined in the second step of Kg.29).
polynomials are unique, but to the odd-order ones, any mul- SinceD{M(x,x) =1{"(x,x) = e(x,x) =0, the level density
tiple of the nextlower even-order polynomial can be added.is given by

Unlike the orthogonal polynomials, tieg do not satisfy any

three-term recursion relation. However, a Gram-Schmidt-like Ry (X) =S (x,X). (4.13
procedure can be used to construct the polynomials. We also

remark that, in Refs[7-9|, the polynomials used are nor- For the universalityy, we need to prove that, with

malized to unity. (Y=X)R((x) =T,
To write Eq.(4.1) and other relations in compact form, we
introduce the weighted polynomiads (x) and their integrals ] S(Nl)(x,y)
Pi(x), lim ———=S(r). (4.14
! N~>ocSN (X,X)
de;(x) .
¢ (X) =W(x)q;(X) = ——, (4.3 In that case, it would follow from Eqg4.9), (4.9) that
i ON0Y) . 15
(X)) = V) im ————=D(r), .
500= | c-yigndy, @4 I o T
with € defined in Eq(2.36. Then Eq.(4.1) is equivalentto 54
f b1 (X) i (X)dX= g Z . (4.5 lim 1 (x,y)=1(r), (4.16
N—o
We define the kernels giving thereby the unfolded correlation functi®}" of Egs.
N-1 (2.29, (2.31). Note that Eqs(4.13 and(4.14) are also valid
SOy = D (9) Zid (0 tly) whenS(" is replaced bys{"'". Thus we would be concerned
j,k=0 with Egs.(4.13 and (4.14 only.
(N2)—1 The skew-orthogonal polynomials appropriate in this case
_ -1 for the Jacobi weight functiomw, ,(x) of Eq. (2.9) are best
mzzo (Gam) T d2m(X) 2m+2(¥) described in terms of the Jacobi orthogonal polynomials
p2atld*ly)  corresponding to the weight function
_ i
¢2m+1(x) ¢2m(y)], (46) W2a+1,2b+1(x)' Note that
N—1
Sﬁ‘l)T(X y)=— E (gj)*lzjkd/j(x) ¢k(y)25§\‘1)(y X) Wa b(X)Wai1p+1(X) =Waai1 24 1(X), (4.17
i k=0
4.7 Wai1p+1(X)=(1=X*)Wq p(X), (4.18
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the latter vanishing dx|=1 for all a>—1, b>—1. These > 3
relations are useful in proving the results given below. De-  (g,,,) Y2, (X)= < co{(2m+ atb+ > 0
T Sin° 6

tailed proofs are given in Appendix A. We find that

aw
bom(X)=Wa p(X)Pom 2 (), (4.19 ~|2a+3 5}, (4.29
Yoms 100 =Way 15 100P5 27100, (420 g 3
(Gom) ™ Abam s 1(X) = CO{ 2m+a+b+ 5)0
with T
o
Uom=om+1= o3 "2+ (4.21) 2at 5 E} (4.30
The even-order),,, and odd-orderp,,,,, are obtained by
integrating Eq.(4.19 and differentiating Eq(4.20, respec-  (gom) ™ Y2hom(X) = — 2m+a+ b+
tively: m 277 sin
1 2a+ 2 W} (431
—|2a+ 5|5, .
Yam(X) = F—Was 151100 Pan 5% (X) 22

+ Yom—2¥om-2(X)  (M#0), (4.22 (o)~ 26h, 1(x)=2m1/ 2 sin
m m+ H 0

7T SIn

3
2m+a+b+ E) 0

3\
—|2a+ 5|5

lﬂo(X):f e(X=y)Wyp(y)dy, (4.23 25|

(4.32

2a+1 2b+1(x)

bom+1(X) =Wa p(X) [Azm+1Pomi 1 Note that Eq.(4.31) is derived by partial integration of Eq.

(4.29 to the leading order. However, there is an additional

2a+1,20+1
~Bam-1Pom- ™ (X1, (4249 constant ternifor a+ b) of orderm™Y2, which obtains from
the lower-order terms in the series in £4.22); this does not
where affect Eq.(4.34 below for A@=O(N"1) and is ignored.

Thus we have
(j+2a+2)(j+2b+2)

Yi= (4.29 1
(1+2)(j+2a+2b+4)’ a[qum(X)'//Zerl(Y)_¢2m+l(x)‘/’2m()/)]
m
~j(j+2a+2b+2) 2 co$2mA )
A= (2j+2a+2b+1)’ (4.26 = —ang (4.33
5 (j+2a+2)(j+2b+2) 5 —0. 427 so that
j:_ . y —1=VU. .
(2 +2a+2b+5) 1 N/2 2 cog2mA ) sin(NA 6)
S0y - | 20 gm= SN2
An important relation here is  sin mA#sIn
(4.39
i{w t1ps 1 (OPZEFLEFI Oy () With A#—0, we obtain the level densit{3.10 or (2.20
a j a,

while, for AG=0O(N~1), we obtain, as in Eq(3.11), the
result(4.14) for B=1. We have thus proved the universalit
XA PIET P T00 — By PP MO0, of RY for finiteil,b and|x|<1. ° ’
(4.28 The skew-orthogonal polynomials for the associated La-
guerre weight functionv,(x) of Eq. (2.11) are derived from
which is helpful in obtaining Eqs4.19, (4.24 from Eqgs. the above Jacobi results and are given in terms of the asso-
(4.22), (4.20. The normalizatior{4.21) is obtained by using ciated Laguerre orthogonal polynomial§2a+1)(2x) corre-
Egs. (4.19, (4.20 in Eq. (4.5. Note finally that the skew- sponding to the weight functiow,,, 1(2X); see Appendix
orthogonal polynomials|;(x) are ¢;(x)/w, p(x). Mehta[8]  A. Note here that Eqg4.17), (4.18 are now replaced by
has considered=b=0, the Legendre case.

The asymptotic forms are derived by using E§.8) in 222 W, (X)Wa i 1(X) = Waa 1 1(2X), (4.39
the above results. Sindg~B;~ —j/2 andy;~1 for largej,
we find, for largem, Wt 1(X) =XW,(X), (4.36
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the latter vanishing ak=0 for all a>—1. We find now,
instead of Eqs(4.19—(4.21),

bam(X) =28 VA, (x)LE2 1 (2x), (4.37)
Yome 1) =223y, (LE D(2x),  (4.39
with
92m292m+1:h(22n?+1)' (4.39
Similarly we find, instead of Eqg4.22—(4.28),
a+3/2
Yom(X) = ——War 1 (X)LE 1 (2x)
2m
+Yom_otom-2(X)  (M#0),  (4.40
Do) =28+ 12 f cx—yway)dy, (44D
Boms1(X) =222 ([ A5, L2 D (2x)
—B5, L& P(2x)], (4.42
where
(j+2a+2)
L__
Y = r2) (4.43
AP=], (4.44
Bj=j+2a+2, B-,=0. (4.45

We also have

d 1
Iy War1(OLP (20} = Swa(0{AR A LEH(2%)
—-BI L D(2x)}, (4.46
again helpful in the derivation of Eq$4.40—(4.42. With

x=(4m+2a+2)cogd, the asymptotic form for
L{?2*D(2x) is obtained from Eq(3.14. Thus

sin

(2m+a+1)

1
—-1/2 =
(Gam)  an(X) = 7090

. 3
X(sin20—20)+ T} (4.4
2
(G2m) ™ Yo 1(X)= sin (2m+a-+1)
\artang
. 3
X(sin20—26)+ 20 (4.48

PHYSICAL REVIEW E65 046221

cos{(2m+a+ 1)

1
—-1/2 = —
(Gam) Ym0 = = T s cos

) 3
X(sin20-26)+ —~|, (4.49

—12 _, [tand
(9am) ™ “Pom+2(X)=2\/——cog (2m+a+1)

, (450

) 3
X (sin20—26)+ T

where, as in Eq4.31), the additional constant term of order

m~Y2in Eq. (4.49 has been ignored. We have thus

1
o [ Pom(X) Yom+1(Y) = dom+ 1(X) Pom(Y) ]

~cog8mAg Shia)) 2 co$x~ Y4 4m—x)Y2Ax]
~ 2mwmsinfcosf XV Am—x) V2

(4.5)

where in the last steppx=—-8mA#sin6cosé. Using the
last form of Eq.(4.5]) (sinced varies withm but x does no,
we find

£Dixy) IN/Z 2 cogx~Y(4m—x)Y2Ax]
X,y)=
NV ) s mxV%(4m—x) 12
sin(x~Y3(2N—x)Y?Ax
_ sin(x™ ™% ) )' 452
mAX
Again, Ax—0 gives
RiX)= /X gex<2N 4.5
l(X)_; X ’ <X< ’ ( . 3

consistent with Eq(2.24) for B=1, while AXR;(X) =r with
N—co gives the universal resu(t.14).

In the Gaussian cas€.10 with =1, the Hermite poly-
nomials Hj(x) corresponding to[w(x)]>=exp(—x?) are

again encountered. The skew-orthogonal polynomials can be

either derived as the limiting casa b—«) of the Jacobi
results (see Appendix A or read directly from the
correlation-function results of Reffl]. We have

bom(X) =€ PH (%), (4.54
Yams 1) =€ X 2H (X), (4.55
92m292m+1:h2m’ (4-56)

Yom(X)= =26 PH 0 1(X) +2(2M—1) thom_(X)

(m+0), (4.57)
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ho(x)= foxe_yzle o(y)dy, (4.58

Boms1(X) =€ — (12)H s 1(X) + 2MHam_1(X) 1.
(4.59

PHYSICAL REVIEW E 65 046221

Because of the extra conditio(b.1) skew-orthogonal
polynomialsq;(x) of orderj cannot be constructed. How-
ever, we can construd;(x) of orderj+1 for j=0,...,
N—2 and then constructy_q(x) of order N—1; thus
On-2(X) and gy-_1(x) will both be of order N—1) while
there will be no polynomial of order O.

The corresponding asymptotic forms are obtained from Eq. For the Jacobi weight functiori2.9), we have, with

(3.20. Using x=(4m+1)Y2cos6, we get Eq.(3.20 for
(G2m) Y2hom and @am) ~YZomr1 With j=2m, while for
Pom and bom+1 WE have

1
S X =——cos{ m+ 1/4
(92m) me( ) 2m3/4\/m ( )
. 37
X(Sln 20_26)+ T , (460)
siné
(92m)l/2¢2m+1(x):2m1/4\/TCO{(ITH- 1/4)
. 37
X (sin 20—20)+T . (4.6)

There is no additional constant term in E¢.60. Then, as
in the Laguerre case,

N2 2 cos(\/Mfm——ijAX)
Sg\ll)(x,y): fX2/4 W\/m dm
_ sin(y(2N—x*)Ax)

mTAX

(4.62

This gives the level density2.28 when Ax—0 while
AXR;(x)=r with N—oo gives the universal resu(d.14).

V. JACOBI ORTHOGONAL ENSEMBLES (ODD
DIMENSION)

WhenN is odd, the formal results of Sec. IV have to be
modified[7] because the last skew-orthogonal polynomial is

unpaired and its normalization is left arbitrary by E4.1).
In this case we supplement E@.1) by the extra condition

J qj(x)w(x)dx= S N-1 (5.2

and introduce the additional kernels
MOGY)=dn-1(0),  MTOGY) =y a(y), (5.2
pY)=gn-1(), Gy =¢gn-a(y). (5.3

The result(4.12) is still valid if we define the quaternio®
for =1, N odd, by

X,y)= , (54
MONZ @0~ ehpmpt sPremt) G

instead of Eq(4.11).

m=0,1,...,N—3)/2,

bam(X) =W s PP (X)) —Cpl, (5.5
Cm= f Wa p(Y) P2 EP H(y)dy, (5.6
Yomi1(X) =War 1511 (NPT HX), (5.7
while
92m:92m+1:h§%++11'2b+11 (5.8
and
W X PZEi:rl,ZJJrl X
Pn—1(X)= 00PN (9 (5.9

f Wa b(Y) PR (y)dy

To prove these results, note first that, without the constant
Cm, EQgs.(5.5), (5.7) satisfy the skew orthogonality as in Egs.
(4.19, (4.20 of the preceding section. The constanpt en-
sures that the conditiotb.1) is satisfied forg,,(x) without
affecting the skew-orthogonality with the other functions.
The condition(5.1) is automatically satisfied fo,,1(X),
becausel,,1(1)=0. Finally, ¢5_1(X) of Eq.(5.9) is skew
orthogonal with the otheg’s and is normalized according to
Eq. (5.1). The results forg,,.1(X) and ¢,,(X) can be
worked out along the steps followed in Ed4.22—(4.28).

For the asymptotic forms, Eq&4.29—(4.32 apply with the
replacemenimn—m+1/2 in the phases of the main cosine
and sine terms. Note that the additiong] term in Eq.(5.5)
does not contribute to the asymptotic forms of the kernel
function, nor do the additional terms involvingandM. We
have thus the same level density and the universal unfolded
correlation functions as in the evéhcase.

For the associated Laguerre case, we have Eg37)—
(4.39 with 2m—2m+ 1 on the right hand sides and thg
term of the type(5.5,(5.6) for ¢,m(X). For ¢n_1(X), we
have Eq(5.9 with PZ"1®2+1 | 281 The asymptotic
forms (4.47—(4.50 again apply with the replacememh
—m+1/2 in the phases.

For the Gaussian case, we again have E484)—(4.56)
with 2m—2m+ 1 on the right-hand side. In this case thg
correction of the typg5.6) is not needed, as,,=0. With
Pn-1—Hpn_11in Eq. (5.9 we getoy_1(X). These results are
identical with the Gaussian-ensemble results of IREf.

VI. JACOBI SYMPLECTIC ENSEMBLES

When B=4, we require a different family of skew-
orthogonal polynomials;(x), defined by
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(4)
J[tj(x)t{((x)—tk(x)tj’(x)]w(x)dx=ngJ—k. (6.1 lim N(X y) =1(2r), (6.12
N~>°082

to obtain the universaR,, of Egs.(2.29, (2.32 for g=4.
Note also that, as foB 1, Egs.(6.9), (6.10 remain valid

[Our definition oft;(x) is related 8] to the definition in Ref.
[7] by a derivative operatidnHereg; is again a normaliza-
tion constant satisfying, = gom+ 1. Thet; polynomials can

be chosen to be of ordgmith j=0,1,2 . . ., andhave other ~With SN replaced bysy". Since Eqs(6.1, (6.12 follow
properties similar to that af; discussed in Sec. IV. It will be from Eq. (6.10, we W°U|d again be concerned only with
useful to write Eq(6.1) as Egs.(6.9), (6.10.

We consider first the Jacobi weight functidg.9). As
, , shown in Appendix A, the (x) can be written compactly in
f [&;(X) i (X) = d(X) b (X)]dX=0;Zjx, (6.2  terms of the Jacobi orthogonal polynomid&®(x),

where thms1(X) = P3m(X), (6.13
i () =[W()]2(). (6.3 tom(X) =P5m—1(X) + Namtom-2(X), (6.14
To write the correlation functions, we define the kernels,where 7,,, is a constant, given in E¢6.21) below. On inte-
analogous to Eq€4.6—(4.9), by gration, we find the polynomials:
2N-1

2
xy)——E (9) 'Zikd{ () uly), (6.9 t2m+1(x):M[D2m+lpzm+l(x)+E2m+lp m(X)

+Faom+1Pom- 101, (6.19
ST (x,y) =S5y ), 6.5
— b b
" 2N-1 B , , 759 (x.y) tom(X) = m[DszSm(X)ﬂLEszgmA(X)
DEN(xY)= 2 (9) 'Zikep| () pi(y) =~ — . N
k=0 y (6 6) +F2mP2'm—2(X)]+ 772mt2m—2(x)- (6-16)
Equations(6.13—(6.16) are valid form=0,1,2 ..., if we
2N-1 taket;(x) and Pj-""b(x) as zero for negativg In Egs.(6.15,
1$D(x,y)= E (9)) " 1Zji(X) pi(y) = f S(z,y)dz.  (6.16 we have used the indefinite integral
(6'7) 1 ; a,b a—-1b-1
) ] ) E(J"'a"'b) P () dx=Pj 1" H(X)= D]+1PJ+1(X)
The correlation functions fop=4 are then given by Eq.
(4.12 with + Ej+1P?’b(X)+ Fj+1P?’—b1(X)-
Onxy) (S(z“N)(x,y) DS, y)) 68 (6.17
N X!y = t .
1Nexy)  SSRT(x,y) The integration constants have been put equal to zero be-

cause of skew orthogonality with(x). The constant®;,

We remark that the kernel$.4)—(6.7) are somewhat differ- E., F;, 7, andg; are given by
Jor e ) ]

ent from those given in Refd.7,8], but the correlation-
function determinants are the same. Our choice is convenient

for asymptotic studies below. The level density is given by _ (jtatb)(j+ta+b-1) 6.19
I (2j+a+b)(2j+a+b—1)’ :
R1(X) =S5N(%,%), (6.9
as in Eq.(4.13 for B=1. With AxR;(x)=r, we need to __ (a-b(j+a+b—-1) 6.19
prove that I (2j+a+b)(2j+a+b—2)’ ’
| SEN(XY) _s2n), 6.10 c___ (ta-D(+b-1) 620
N SROGX) =T 2jtatb-1)(2j+tatb—2)’ :
m DENCX.Y) _pan), 6.1 _(i+a-D(+b-D)2j+atb=5)
N—= SSR(X,X) MTG-1(jtatb-1(2j+tatb—1)" >
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- _2ngp 227020 (2m+a+1)I'(2m+b+1) 6o
Qom=Oom 1= 23 b—1  (4m+at+b+ ) (dm+a+tb— DI (2m+ L)l (2m+atb+1)’ 622
|
For largej and largem, 1 ) , cog2mA 60)
g_[¢2m(Y)¢2m+ 1(X) = domi1(Y) pom(X) 1= “sing
1 -1 -1 o (6.30
Dj=—F=7+0(" ", E=0("Y, (623 :
where we have ignored the rapidly oscillating term arising
a+b from the constant in Eq6.28. Hence
7=1+0(j™"), gam=—7+0O(Mm3), (6.29
) M 4m? e JNcos{ZmA 6)  sin(2NA0)
_ o NOGY)= o mwsing O 27A@sing
and, in the same approximation, (6.32
_ _~ rpab _pab Again, we get, on appropriate limits, the level dengyl0
tam+100= 70 LPam+ 100 = Pam—1 ()], (629 from Eq.(6.9), and(6.10 for the kernel, confirming the sta-
tionarity and universality fo3=4.
1 ., /o y For the associated Laguerre weight functi@ll), we
tom(X) = H{sz(x)+2(a+ "2 wy p(x)]~ Y3 obtain from Eqs(6.13—(6.16), after suitable limitgsee Ap-
(6.26 pendix A),

Here in Eq.(6.26 the nonpolynomial term on the right-hand
side is the largen approximation for the lower-order terms
in the series in Eq(6.16 and has been verified numerically.
Then, withx=cosé and using Eq(3.8), we find the leading
terms in the largen expansion of the polynomials,

—12 sing a+tb+1
(9om) “Poms1(X)=— HSI 2m+ 5
A 6.2
&7 2)2) (627

a+b+1
2m+ 6

(Gom) ~ 20, (X)=1 ;cos{(
m " 2| Jmmsing 2

LT 1 6.2
— a+§ E + s ( . 8)
—1/2 47 m a+b+1
(gom) ™ “Pom+1(X)=2 —aing ° 2m+—
1\ 7 6.2
—lats) o) (6.29
( )*1/2¢/ (X)_ / m sin (2m+ a+b+1
9zm am 7 Sinfe 2
1\ 7 6.3
—lats) 5 (6.30

where Eqs(6.29), (6.30 are obtained by a partial differen-
tiation of Egs.(6.27), (6.28. With A 6§ as defined before,

thns 1(X) =L (x), (6.33
, @ +a—1 ,
th(X)ZLmel(X)—F m th,z(X), (6.39
tom+ 1) =—LE, 1() +LEN(x), (6.35
@ @ 2m+a—1
tom(X) = —Lom(X) +Lon_1(X)+ om_1 tom—2(X).
(6.36

For a=0, Egs.(6.35, (6.36 give back the results of Ref.
[8], with the observation that any multiple of,,(x) can be
added tot, . 1(X). The normalization constant is given by

(6.37)

The resultg6.35),(6.36) derive from Eqs(6.33), (6.34 from
the indefinite integral,

Jom=%2om+1= — h(zarl%-

f L x)dx=~L{33200= LT 00+ LP(x),

(6.38

the constants of integration in Eq$6.35, (6.36 being
zero on skew orthogonality with t;(x). With
x=(8m+ 2a+4)cogd corresponding effectively tg=2m
+1 in Eq. (3.14, the asymptotic forms are given by

sin (2m+1+a/2)

1
—12 _
(0] (x)=
|92ml 2m+1 —miang

) 3
X (sin 26—20)4—7 , (6.39
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|92ml Y2 2m(X) th(X)=4MHom_1(X\/2) +4mty_,(x),  (6.47)
1 ! s{ 2m+1+a/2 1
=7 2| 2Vamcosasims 1AM a2 tama0) =5 Han1012), (6.48
. 3w
X (sin 20—20)+T +1], (6.40 1

tom(X) = ﬁH2m<xﬁ>+4mt2m,2(x>, (6.49

|gam| ~ 2 _L/ene 2m+1+a/2 i izati
Goml ™~ Pomi1(X)= 5\ - cog(2m+1+al2) along with the normalization

37 Uom=Gom+1=(2m+ 1)1 r1/222™, (6.50
X (sin 29_29”7} (6.41)
For largem, we have, withx=(2m+3/2)*?cosé corre-
sponding toj =2m+ 1 andx—x+2 in Eq. (3.20),

1
|92ml Y2 om(x)= _ sir{(2m+ 1+a/2)
8\mmcos'd sin o 1 1 :
(92m) bom+1(X) = 4 — sin (m+ 3/4)
37 m~“\msing
X(sin20—26)+ —|, (6.42
4 ) 37
X (sin 20—20)4‘7 , (6.5)
where we have usdd,|, sinceg,, is negative. In deriving
Eq. (6.40 we have used the larga-approximation 1 1
(92m) ™ Vbom(x)= { _ cos{(er 3/4)
8m—x 1/8m—x 1/4
(—)t2m<x>=—[L%il(x)ﬂé%ﬂx)]—— ) (4m)* | 22mm sio
2m 2\ 2m 3 .
o
><(2m)a/2[wa(x)]_1/2, (6.43 X(sin20—260)+ T +§] , (652
which follows from the three-term recursion and a sum rule i
for L{®(x) [16]. Ignoring, as in the Jacobi case, the rapidly 12 ya [28iN6
] 1 1 —
oscillating term, we obtain (G2m) ™ “bomy1(x)=2m T cos (m+3/4)
1 ) 37
a5 [B2m(¥) B 200 = Bomi1(¥) dinm(X)] X(sin26-26)+ 7=, (6.53
m
CO{EXM(Sm_X)mAX (Gam)~ 2 bn() - 'r{( +3/4)
X)=— —————sin(m
__12 , (6.44) 9zm 2m (m)¥4/27 sing
7TX1/2(8m_ X) 1/2
) 3
so that X (sin26—260)+ T . (6.59
1 Here, in deriving Eq(6.52, we have used the larga-ap-
1/2 _wv\1/2 ’ y
@ J‘N CO{EX (8m—x)**Ax proximation,
X,y)= dm
San(x.y) x8  axYH8m—x)1? 1
2\2tom(X) = —————-[ ~ Hamy 2(XV/2) + 4MHpn(x1/2)]
|1 4(2m—x?)
sin Exfl’z(SN—x)l’zAx

- 2mAX : (6.49 +m™ (g V2, (6.55

; - (4)
Again, with Ax—0, we get the level densit{2.24 corre- NOW: using Eqs(6.51~(6.54 in Sy, we have,

sponding toB=4, while the limit for finiter gives the uni-

versal resuli(6.10. @) ):JN cos(2\/(2m—x2)Ax)dm
(V\)/e final(ly 2t)lizr)n to the Gaussian case. We have now, with San (%Y W22 m2m—x2
w(X) =exp(—2x9),
_sin(2y(2N—x*)Ax)
s 1) =2(2M+ 1) Hom(X42), (6.46 = 2mAx (6.56
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so that we get the level densit2.28 with Ax—0, and the x o
universal kernel6.10 for finite r. ®j(X):7TJ R.(x’,))dx". (7.6)

C

VIl. ASYMPTOTIC RESULTS FOR GENERAL WEIGHT . . .
FUNCTIONS Here|[c, d] is the support of the density functidr,. If we

used instead ofc, the difference would bg, changing

We consider in this section a general procedure for obtainthereby only the sign of the polynomial. Any other choice of
ing asymptotic forms of the polynomials without going the lower limit will make x(x) j- dependent. With Egs.
through the tedious process of deriving their exact forms(7.2), (7.4), the orthonormality of thep;(x) is easily verified,
Our approach is similar to that of Brezin and Zé&] who
considered thg8=2 case for weight functions of the type
w(x)=exd —NV(X)] whereV(x) is a low-order polynomial. f &i(X) Pr(x)dx
We consider all weight functions for which the level density
R;(x) can be derived for largdl from Eq. (2.14), and the 1 rd X
polynomials of all three types. Our asymptotic results will be = EJ dxA,-(x)Ak(x)[ cos{ wf [Ry(X",])
in conformity with those of Secs. IV, V, and VI and hence the ¢ ¢
universality will follow for a wider class of weight functions. X
We also give exact integral representations of the polynomi- —Ry(x",k)]dx’ +cos{7-rf [Ri(X',])
als, extending thereby th8=2 result of SzegdRef. [16] ¢

Chap. 2 and Eynard12], from which the asymptotics can
be worked out rigorously. +R1(X", k) JdX" +2x(x) ]
We start with theB=2 case. It is convenient to deal with
the orthonormal set of functions d IRy (X)) _ x[ 9Ry(X,])
=J dx—.cos{(J—k)wJ (—.)dx’}
100=(h) " w(x) 1¥%p;(x), (7.0 . AN
defined in terms of the orthogonal polynomialgx) of Sec. s 7.7
lll. We propose the ansatz that, for asymptgties;(x) can _ ] o
be written as where both the terms in the first step vanishjfde large and
far apart, while the second step is for finjje-k|. One can
b;(x)=A;(x)cog O(x) + x(x)], (7.2)  also verify the three-term recursion relations asymptotically.

Our final result(7.2) along with Eqs(7.4) and(2.14) leaves

where the amplitudé (x) is a slowly varying function of, x(X) undetermined, bult is consistent with the asymptotic re-
the phase® () grows indefinitely with increasing and the sults for Jacobi, associated Laguerre and Hermite polynomi-
phasey(x) is either independent gfor slowly varying with als of Sec. Il as well as with the Brezin and Zee ansatz for
j. Using Eq.(7.2) in Eg. (3.5, replacing summation by an W(X)=exd—NV(Y)]. In the latter case note that

integral, and ignoring the rapidly oscillating contribution to N"*Ry(x,N) becomes independent &f as is evident from
the integral, we find, for larg, (2.14. Chapter 12 of Ref[16] discusses other generaliza-

tions that are also consistent with our results.

1N TakingR, =0 for x<c andx>d, we can write the ansatz
Ri(x,N)= Ef [A;(x)]?d], (7.3 in the form,
0
i 1/2
giving thereby the amplitude in terms of the level density :(ZaRl(X'J)> JX R.(x" 1)dX +
R;(x,j) of thej dimensional ensemble, ¢i(x) dj cosm|_ 1 )AX X0 |,
(7.9
IRy(X,])
[A(0)]P=2———. (7.4 : . :
d) suitable for comparison with the ansatz f8=1,4 below.

_ _ _ Here, without loss of generality, the sign 8§(x) in Eq.
In the asymptotic casd®; is also the density of zeros of the (7.8) has been taken to be positive. MoreovRi(x,j) fol-

polynomials. This is implicit in Chap. 6 of Ref16] in the  |ows from Eq.(2.14 with 8=2 andy(x) satisfies
Jacobi case, but is observed to be true more generally from

the integral representations discussed later. The spdging
(=R;') between the consecutive zerosgfis given by ‘Z 1]ox <1, (7.9
Jj " Ry | X
90
0j(x+D)=8;(x)=Dr=m (79 \we believe that both quantities in E(.9) are of orderj 1.
Now, with summation replaced by an integral, the kesf\é]
where we have assumed tHa¢x)|x’ (x)|<1. Thus of Eq. (3.2 for largeN is given by
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S@(x,x+Ax)= LN b;(X) dj(x+Ax)d]

NIRy(X,]) . .
=J ————cogwR(x,])Ax)d]
o J]
sin(mR1(x,N)Ax)
B TAX ’ (7.10
so that the universal result,
SP(x,x+rD(x)) sinwr
fim N 09) _sinar (7.10

S@(x,x) r

is obtained for a wide class of weight functions.
For the skew-orthogonal polynomials of th=1 type,
we redefines;(x) of Eq. (4.3) as

N— o0

dii(X)

ax (7.12

¢j(x):(9j)7l/2‘N(X)qJ'(X):

Then, along withi¢(x) of Eq. (4.4), we have the skew-
orthonormality relation,

f () P (X)dX=Zj. (7.13
Now, we propose the ansatz
$am(X) = TBR(X)Ry(X,2mM)
Xcos{wjxle(x’,Zm)dx’+§(X) ,
(7.149

Yom+1(X) =[ TBm(X)Ry(x,2m)]~*

2 X
PRI cod [ R ama + 00

am '
(7.15
Pom(X) =B (X)sin wfx Ry(X",2m)dx’ + &(x) |,
(7.16
JR1(X,2m
Bame 100 =~ [Bp()) 12T
X sin wfj Ry(x",2m)dx’ + &(x) |,
(7.17

whereR; is given by Eq(2.14 with =1, butB,, and¢, as
x above, are undetermined. Equatio14)—(7.17) are

PHYSICAL REVIEW E65 046221

valid for the even-dimensional case of Sec. IV. For the odd-
dimensional case of Sec. V, the formal expressions are the
same with the replacemeR (x,2m)— R (x,2m+1). Proof

of these results are similar to th®&=2 case, with orthono-
mality replaced by skew orthonormality and the kerﬁﬁl)
replaced by the kerneB{") of Eq. (4.6). In the even-
dimensional casé&he odd-dimensional case is handled simi-
larly), we first write the ansatz in the form,

Gam(X) = Asm(X) €04 Oon(X) +£1(X)],  (7.18

Boms1(X)=Aoms 1(X)c0g O (X) + £2(x)], (7.19

allowing for different forms for the even and odd-order poly-
nomials. The integral representations below will prove that
the zeros ofd,,(X) have the densityRq(x,2m), giving
thereby the integrated density in the phase in Eql4).
Similarly zeros of ¢,n1(X) have the same density
R;(x,2m), except for the density of an additional zero that is
absorbed ing,(x); thus ®,,(X)=0,,(x) as in Eq.(7.17).
The integrated functiong,,(x) and ¢, 1(X) are obtained
by partial integrations, givingnter alia an additional factor

[ 7Ry(x,2m)]~ 1 in the amplitudes. Skew orthogonality gives
£1(X)=&5(x), while evaluation ofR;(x)=S{"(x,x) gives
Aom(X) Agmy 1(X) = TR (X,2m) dR,(X,2m)/ dm. Writing
Aon(X) = 7B (X)Ry(X,m), we get Eqs(7.14—(7.17) with
&(x) satisfying the condition§7.9) for y(x). The skew nor-
mality is automatically satisfied to the leading order. The
kernelS{’ is now given by

o L
SN, X+ AX) = . [ Pom(X) om+ 1(X+AX)

— om+1(X) Pom(X+AX) Jdm

- JN/Z&Rl(x,Zm)

om cogd 7R (x,2m)Ax)dm
0

B sin(R(x,N)AXx)
- mAX

, (7.20

which, on takingN—o limit, gives the universal result

(4.14) for p=1.
The asymptotic forms for th@=4 type weighted skew-
orthonormal polynomialg;(x) are given by

¢>2m<x>:cm(x>cos{2w [ Rl(X’,m)dX’Jré(X)}
(7.2))

Gom+1(X) =[27CH(X)Ry(X,m)] "

IR{(xX,m) . x
Xa—msm 277[ Ry(x",m)dx" + £(x)

(7.22
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Gom(X)=—27Cm(X)Ry(X,m) because, as discussed below, the even-order polynomials
have complex zeros whose imaginary parts become small for
largem; in this case R,(x,m) is the density of the real parts
of the zeros.

We now turn to the integral representations for the three

(7.23 types of polynomials. These are given as averages over ma-

IRy (x,m) trix ensembles, and will be useful in deriving the above

Doms1(X)= [Cm(x)]‘lT asymptotic forms rigorously. We define the averag€ ofith

respect to the eigenvalue distributi@?2) for given 8, N as

XSir{wa_X Ri(x",m)dx’ + Z(x)

xcos{ZTrfx Ry(x",m)dx"+ £(x)

<F(X1, ""XN)>ﬁ,N:J J F(Xl, ...,XN)

7.2

(7.29 XPp X1,y -+ Xn)dXg .. dXy.
where R1(x,m) is given by Eq.(2.14 with 8=4 while 79
Cn(X) and ¢(x) are undetermined witl§(x) satisfying the (7.28

conditions (7.9) for 7(x). We have used the definition
$i(x)=(9;) " Yqw(x)]¥%;(x) instead of Eq(6.3) with unit
normalization in Eq(6.2). The proof of Eqs(7.20)—(7.24) is
almost the same as that of Eq%.14—(7.17). Starting with
the ansatz in Eqgs(7.18), (7.19, we make the following j
changes. The integral representations below will prove that, p,—(X)=< 11 (X_Xk)> _ (7.29
for B=4, ¢, and ¢, 1 have doubly degenerate zeros k=1 2j

(except for one extra zero ith,y,. 1) SO that we get integrals . .

of 2R, (x,m) instead ofR,(x,2m) for ®2m:G_)2m- We have The skew-orthogonal polynomials, appropriate 61

additional factors ofR; in ¢; (instead ofR;* as in i), (even-dimensional cageare given by

since partial differentiation is used. Fra (x) = SS(X,X), 2m

we get Apm(X)Aom s 1(X) =[2mRy(X,m) ]~ IRy (x,m)/om. q2m(x)=< 11 (X—Xk)> , (7.30
Writing A,(X) =C(X) gives then Eqs(7.21)—(7.24). The k=1 1.2m

kernel S§3) of Eq. (6.4) is now given by

sin(27R(x,N)Ax) Qo (x)=<
2mAX ' (7.29 e

We consider monic polynomials, i.e., polynomials with high-
est coefficient unity. Then the orthogonal polynomials, ap-
propriate for3=2, are giver(16,17 by

S‘{,‘}(x,x+ AX)=

2m 2m
x+2 xk)H (x—xk)> . (7.3)
k=1 k=1 N

,2m

which gives, forB8=4, the universal resu(6.10 in the limit. For 3=1 (odd-dimensional cagewe have
We have assumed hefas well as ford=1 above that

theg; are positive. When thg; are negative|,gj|*1’2 should

be used in the definition op; with change of sign in either Qom(X) = H (X—=Xy) -Cp, (732

bom OF domye1 (@s in theB=4 case of the associated La- Lam+1

guerre weight function Moreover, SinC&,m,=Jom-+ 1, alter-

native expressions for the skew-orthonormal functignic) _

involving other powers of the; are possible. The ansatz Gam-+1(X) =

(7.14—(7.17 and Eqs(7.21)—(7.24) are consistent with the

2m+1

2m+1 2m+1
X+ Z xk> H (x—xk)> :
k=1 k=1 1,2n+1

7.3
asymptotic results given in Secs. IV, VI, respectively, fr (7.33
=1,4 for the entire Jacobi family of weight functions. For valid for m=0,1,...,(N—3)/2. Here C,, is determined
these weight functions, th&, andC, are easily determined, from the condition(5.1). gqy_; is given (in the nonmonic
L, Ra(x,2m) form) by
Bn(0)x[Ra(x2m)] V2=, (7.26) -
X—X
~120Ra (XM < kl:ll ( k)> IN-1
Crn(X) e [Ry (x,m) ]~ ——, (7.27) an_1(X)= N=T ' (7.34
dxw(x X—X
the proportionality constant being i %2, 271 2712 W )< lL[l ( k)> N1

for By(x) and 271, m'2  275%for C,,(x), respectively,
for the Jacobi, associated Laguerre, and Hermite cases. For 8=4, the skew-orthogonal polynomials are

As discussed in Secs. IV, VI, Eq$7.16), (7.21) have
additional constant terms that contribute rapidly oscillating m
terms in Eqs(7.20, (7.25 without affecting the final uni- t2m(x)=< 1T (X—Xk)2> , (7.39
versal results. Fog=4, the extra term in Eq(7.21) arises k=1 4,2m
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m m case. We have also given a formalism for deriving (then-
t2m+1(x)=< x+2> x| 11 (x—xk)2> . universal level density without using the polynomial
k=1 k=1 4,2m method.
(7.36 We believe that the concept of skew orthogonality will be

useful for other random-matrix systems and in other con-

A proof of these integral representations is outlined in Ap-texts. The local correlation functions have universal proper-
pendix B. Note that the above averages for all theezan be ties also for the Brownian-motion matrix ensemb|&sl7],
written in terms of det—H) and (trH)det(x—H) averaged viz., ensembles interpolating between the invariant ones.
over the matrix ensemble ¢i. We mention moreover that, These ensembles are useful in the studies of small symmetry
in a recent unpublished work, Eynarti3] has also obtained breaking in quantum chaotic systefds]. In the GOE-GUE
Egs.(7.30, (7.3, (7.35, and(7.36). [23] and GSE-GUH24] interpolations, the concept of skew

We finally give a heuristic proof, needed in the aboveorthogonality has been implicitly used. Similarly polynomi-
ansatz, of the relation between the density of zeros of thals on the unit circle are used in the study of circular en-
polynomials and the level density of the corresponding ensembleg17,19,2]. The skew-orthogonal polynomials may
sembles. It is known that the orthogonal polynomigjéx) be useful in the study of other Brownian-motion ensembles.
have real zerofl6]. Our numerical studies indicate that the We also believe that new methods of semiclassical quantiza-
zeros of the skew-orthogonal polynomiajg,(X),dsm-1(X) tion [25] of chaotic systems can be developed using skew-
andt,,.1(x) are also real, while those of thg,(x) are orthogonal functions as tools.
complex, having small imaginary parts for langeand hence
doubly degenerate real parts. To find the density of zeros, we ACKNOWLEDGMENTS
take the eigenvalue spectrufw,} to be ordered(i.e., x;
<X,=<X3...) andwrite x,=(Xy)+ xc. The spectrum of
the average eigenvalugéx,)} has asymptotically the den-
sity R;(x). The fluctuationssx, are smal[2], spanning over APPENDIX A: PROOF FOR JACOBI
a few spacingsi.e., ( 8x,6x))~=(Ry(x)) 2 for k,| not too far SKEW-ORTHOGONAL POLYNOMIALS
aparf; the 6x, then can be ignored in the leading approxi-
mations in Egs.(7.29—(7.39. Thus, for =2, p;(x)
=II(x—(x;)), giving thereby the zeros &%;) with the den-
sity Ry(x,j). For g=1, we have similarly the density e start withg=1. Sinceq;(x) is a polynomial of order
R (x,2m) for the zeros ofy,,(X) with an additional term for j, the weighted polynomialsh;(x)=w, ,(x)q;(x) can be

the zero ati(xy) for gom.1(X). For =4, the leading ap- \yritten, without loss of generality, as
proximations fort,,(x) in Eq. (7.35 gives doubly degener-

ate zeros afx,) with density R;(x,m), while ton; 1(x) has  ¢;(x)= yj(i)v\/‘,ﬂ‘b(x){Aj pat L) — Bj_.P?*} LD+Lx))
an additional term corresponding to the zero alE(x)).
Sincet,(X) is positive definite, the zeros of,,(x) must be 2 0
complex with small imaginary parts for large. +k:O Yk Pu(X),

We thank Sanjay Puri for valuable discussions.

In this appendix we prove the Jacobi results for the skew-
orthogonal polynomials given in Secs. IV, VI f@g8=1,4,
respectively.

j-1
(A1)

VIl CONCLUSION valid for j=1, ¢o(x) beingw, ,(x). The y{) are the ex-
pansion coefficients, and ti#g ,B; are given in Eqs(4.26—
The universality of energy-level fluctuations, observed in(4.27). We choose

a wide range of physical systems, was first considered by
Fox and Kahn[11] for the unitary ensembles and later ex- Yo =(Asm) "t YETP=1, (A2)
tended by Dysorj7] to the orthogonal and symplectic en- ) ) o _ )
sembles. Dyson conjectured that “the local statistical propi0 fix the leading coefficient in the;(x). Then using Egs.
erties of the eigenvalues become universal propertie&-4. (4.28, we have
independent of the global eigenvalue distributions” in the -1
limit of large dimensionality. We have established the univer- ()= (D (x) P_2a+1,2b+1(x)+ 2 (j)w (X)
sality rigorously for the Jacobi class of weight functions and " Yy Wat1b+1 =1 k=0 [N
via an ansatz for more general weight functions. We have (A3)
also shown that the local properties are stationary, being in- ) ) o
dependent of the location in the spectrum. Our proof reliealid for j=1, while y5(x) is given by Eq(4.23. From the
on a systematic study of the skew-orthogonal polynomial®rthogonality of the Jacobi polynomials we have
and their asymptotic forms for the Jacobi clé@ssluding the
associated Laguerre and Gaussian gas&s the more gen- - j Wa1ps1(X) Pj2a+l,2b+ L(x) dh( X)dX
eral weight funtions our ansatz for the asymptotic polynomi-
als relies on a heuristic derivation of the density of zeros of
the polynomials. The matrix-integral representations of the = f Waas 120+ 1) PP P27 1) gy (x)dx=0,
polynomials—orthogonal as well as skew orthogonal ones—
appear to be promising for rigorous studies in the general (A4)
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for k=0, ...,j—1. Using this and the skew-orthogonality =v,,, is nonzero, giving thereby Eq$4.20, (4.22. The

relation (4.5, we find that skew orthogonality ofj,m+1(X) andg,m+2(X) gives
(2m+2)_
Yk =0, (AS) y h%%tjfbﬁL Aom+1 Aom . Bam (A7)
2 1
for k#2m,2m+2, and " h2aH12+1 As o Bome1 Agmiz
M h=0, (A6)  and hence Eq(4.25), the last step in Eq(A7) following

from Eg. (A9) below. Using they(‘) in Eq. (A1) gives the
k#2m,2m+1. Moreover, sinceysa'™") is arbitrary (as  ¢;(x) in Egs. (4.19, (4.24 and then the normalization
skew orthogonality is not affectgdwe choose it to be zero (4.21) is obtained from Eqs4.19, (4.20. Finally, the rela-
and then Eq(A6) is valid for k=2m also. Thus;z(zm”) tion (4.28 is proved from

f dxwaHbH(x)Pza“2*’“(x>d—[wa+1b+1<x>P2a“2"“(x>]

d
f AXWa 1 142 (X) PR 20 [Was 102 (0O PP 2T H(x)], (A8)
|
which is nonzero only fotj—k|=1. Now, doing the inte- b;(x)= lim (_1)127b+1/2ba¢ja,b(1_belx),
grals in Eqs(A8) for |j—k|=1 in terms ofn?**+®** and b
kPa L2+ we find (A14)
2a+1+1 p2a+1m+1 P (X)= lim (— 1)j7127b71/2ba+11/f?’b(1—2b71X),
j+1 b—o
Aj= (J+a+b+1)—23+12b+1’ i~ pzarimr N (A15)
Kj i
(A9)

giving thereby Eqs(4.37)—(4.46). Similarly, for the Hermite

hatwith j=2m,2m+1
and hence Eq$4.26), (4.27). This completes the proof of alll case, note thawith j=2m,2m+1)

the results4.19—-(4.29.
For associated Laguerre and Hermite weight functions X
one can directly follow the above procedure, or more simply e 2= lim W, a( \/2—) , (A16)
take the limits of the Jacobi results as discussed below. For ane a
associated Laguerre, note first that

o X
()= lim 2ii1a-1”2paal
W)= lim 272 bpay, (1-2b"1x),  (AL0) Hj ()= lim 27jfa P, (Jg) (ALD)
kj=lim 2/jta~lKk®, (A18)
L®(x) = lim PH°(1-2b~x), (A11) a—=
b—o
. hj= lim (21j1)%a~ 1" %32, (A19)
2\! a—o
(@) — | _- b
kﬁ—!m( b) k&P, (A12)
. X
di(x)= lim 22m(2m)!(2a)‘1’2¢?’"a(—) ., (A20)
ar1 P e ' 1 2a
(a) _ a,b
hj —b'[“ arori (A13)
X
x)= lim 22M(2m)!(2a) (0 ~1"2 aa(—)
Thus for skew-orthogonal functions we haire terms of the il a o ( ( v J2a)’
Jacobi skew-orthogonal functios™”, "), (A21)
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giving the Hermite resultg4.54—(4.59). (2j+a+b)P** " 1(x)=(j+a+b)P*"(x)
For B=4 with the Jacobi weight function, we expand
tj(x) as +(j+a)P*%(x), (A29)
-1
t/(x) = Pabl(x)+2 7Dt (%), (A22)  (2j+a+b)Pi () =(j+a+b)PF(x)—(j+b)P2P(x).

(A29)

so that Eq(6.17) gives This completes the proof of Eq&.13—(6.22.
The associated Laguerre resul6s33—(6.39 derive di-
rectly by using the limit§A10)—(A13) in Eqs.(6.13—(6.22),

t(x)= m[D Pa "(x)+ Ej Pla'*bl(x) + FJ'P?LDZ(X)] yvhile the Hermite result§6.46)—(6.49 derive from the lim-
Its
+ 2 70, (A23)
e 2¢= limw, ,(xv2/a), (A30)
Then the orthogonality of tthf"'b and the skew orthogonal- o
Ty of the't; give Hj(x\/§)= lim 2ij!a*i/2Pf"a(x\/%). (A31)
7P™ =0, (A24) o
for k#2m—2, and APPENDIX B: PROOF OF MATRIX-INTEGRAL
REPRESENTATIONS
n(k2m+l):O' (A25) In this appendix we outline a proof of the matrix-integral

representation§7.29—(7.36 of the polynomials. The Van-

for k+2m. Also 77(2m+1)' being arbitrary, is chosen to be dermonde determinai2.3) and its fourth power can be writ-

zero. Thusn(zfn )2= nom IS the only nonzero coefficient, giv- ten as{1],
ing thereby Eqgs(6.13—(6.16. The skew orthogonality of
t2m andth—l glves AN(XlV . XN) de{XN V]# v=1,...) N » (Bl)
_ 1 2D2m-1 4 2N-»
an_gzm72 om+a+ b_2h2m 1 [AN(X]_, - ,XN)] :detx ,(2N
2N—v—1
2F _V)X ],Lzl ..... N,v=1,..., N -

“miarboiMn-2) (A26) (B2)

while the normalization is given by For B=2, Eq.(7.29 represents orthogonal polynomials with
the weightw(x), if
_|_Pom L ap_ 2Femir ap
92m= | omtatb—1"2" 2mt+a+b 2m-1)’
(A27) f Xp; (X)w(x)dx=0, (B3)

confirming thereby Eq96.21), (6.22. To prove the Jacobi

result(6.17), we note that the first step is given in a differ- for k=0,1, ... j—1. Using Egs.(2.2), (7.28, and (7.29
ential form in Refs[16,26, while for the second step we use along with Egs.(2.3), (B1), we find that the integral in Eq.
[26] (B3) is proportional[12] to

j+1

f dxy .. f dX|+1(X1+1 i(Xgs o XPDA (X e X 1) Hl W(X,,)
=

j+1

1
= (J—{——1)|f Xm . f de+1(; EP(Xij+1)kAj(Xil’ . ,Xij) Ai+1(X1, . ,X]'+1)}_:[1 W(XM)’ (B4)
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where Zp is a summation over all permutations which is zero folk=0,1,...j—1, proving thereby EqB3)
Xy - o X ) of (Xq, ... X+1) andep(==1) is the sign  and hence Eq.7.29.
1 j+1 J

of the permutation, equal to the change of sigijn ; after For =1, we consider Eq47.30, (7.31) for the everN
the permutation. The summation term in H&4) can be case; a similar consideration would apply to E(s.32-
written as (7.34) for the oddN case. They; of Eqgs.(7.30), (7.31) rep-

resent skew-orthogonal polynomials of tge=1 type with

; en(, ) (X0 ) the weightw(x), if

X% o X f f dxdye(x—y)y*q, OW(x)W(y)=0,  (B6)
o Xt
=(—-1)def . : . -] for k=0,...,2m—1 and also fork=j for j=2m,2m+1
both. The integrals in Egs.(7.30, (7.3) involve
1 1 1 [AN(X1, - .. Xom)| and therefore Mehta’s method of integra-
tion [1] over alternate variables can be used. Fe2m, the
(B5) integral in Eq.(B6) is proportional to
|
2m 2m+2
f dxy .. -dX2m+2€(X2m+1_X2m+2)(X2m+z)k( Hl (X2m+1_xv)) [Aom(X1, - -« Xom)| Hl W(X,)
v= m=

2m+2
:(Zm)!j dx ... f dX2m+2f(X2m+1_X2m+2)(X2m+2)k< H W(XM)>A2m+1(X11 oo Xome1)
X1SXo< ... <Xopm pn=1

0 0 o X FiXemi1)
Xim Fom(X1) ... X%m Fom(Xam+1)
1 (2m)! m
:ETJ XmdX3. . .dX2m+1det . . . . . H W(X2i+l)
’ i=0
1 Fo(Xy) ... 1 Fo(Xam+1)
X Fexp)
X;" Fom(x1)
1 (2m)! XIM Fomo1(Xq) m
:E—m|(m+1)|f XmdX3 . .dX2m+1de i:]-—-[OW(XZi+1)’ (B?)
1 Fo(X1)

where in the second and third steps the above-mentioneldh the last step of EqB7) all permutations of

Mehta’s method of integration over alternate variables ix;,Xs, ... Xoms1) have been used. The determinant in the
used and~(x) is given by last step is zero fok=0, . . . ,2n, proving thereby Eq4B6)
. and(7.30. Forj=2m+1, the first integral in Eq(B7) has,
Fk(X):J y<w(y)dy. (BY) in the .integrand, the extra factox4,, 1+ 2x,) so that
X A, 11 in the second form is replaced by
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Xt xami
ittt Xgmed 2m+1
de . c e . :( 21 X:U-) A2m+1(Xl, P 1X2m+1)- (Bg)
=
1 ce 1
Then the second row in the determinant of the last ste{B®f is replaced byxim”,FZmH(xl), ..., 0ther rows remaining

the same. Again EqB6) for k=0, ...,2m—1,2m+1 and hence Eq.7.31) are verified.
For 8=4, Eqgs.(7.35—(7.36 represent the skew-orthogonal polynomials if

f dx{X ] (x) — kX" t;(x) }w(x) =0, (B10)

fork=0,...,2n—1 and also fok=j for j=2m, 2m+ 1 both. In this case we use E@?2) in the joint-probability density
(2.2). Forj=2m, the integral in Eq(B10) is proportional to

d m m 2m+1
f Xm - -dXZde2m+1{ X;m+1dx—]._.[ (X2m+l_xv)2_kxlé%il].—.[l (X2m+1_xv)2]( ]._.[1 W(X/.L) [Am(xly B 1Xm)]4
v= =

2m+1v=1
0 0 o Xemer KGmis
;iho2mg™ L G 2MGT T | o
=f Xm .. .dX2m+1 de . . Ces . . Hl W(X’u)
=
1 0 1 0
X kKl
1 xito2mg™ Tt s
:mf dxg ...d%pm, o detl . . }':[1 w(X,), (B11)
1 0

where the last step is by a permutation of all the variables in the first step. The determinant in the last step is again zero for
k=0, ...,2n, confirming Eq.(B10) and hence Eq.7.35. For j=2m+1, we have the additional termx{,,. ;+2=x,) with
I1(x—x,)?. In this case the second row of both the determinants of Bl are replaced bjx3™ 1, (2m+1)x3", ... ], the

last determinant being then zero fo=0, ... ,2n—1, and 2n+1. Thus Eq.7.36) is verified.
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