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Skew-orthogonal polynomials and random-matrix ensembles
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There is considerable interest in understanding the relation between random-matrix ensembles and quantum
chaotic systems in the context of the universality of energy-level correlations. In this connection, while
Gaussian ensembles of random matrices have been studied extensively, not much is known about ensembles
with non-Gaussian weight functions. Dyson has shown that then-level correlation functions can be expressed
in terms of a kernel function involving orthogonal and skew-orthogonal polynomials—orthogonal for matrix
ensembles with unitary invariance and skew orthogonal for ensembles with orthogonal and symplectic invari-
ances. We have obtained the following results.~1! Skew-orthogonal polynomials of both types are derived for
the Jacobi class of weight functions including the limiting cases of associated Laguerre and Hermite~or
Gaussian!. ~2! Matrix-integral representations are given for the general weight functions.~3! Asymptotic forms
of the polynomials are obtained rigorously for the Jacobi class and in the form of an ansatz for the general case.
~4! For the three types of ensembles, the~asymptotic! n-level correlation functions with appropriate scaling are
shown to be universal, being independent of the weight function and location in the spectrum, and identical
with the well-known Gaussian results. This provides a rigorous justification for the universality of the Gaussian
ensemble results observed in quantum chaotic systems. As expected, the level density is not universal.

DOI: 10.1103/PhysRevE.65.046221 PACS number~s!: 05.45.Mt
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I. INTRODUCTION

Universality of energy-level fluctuations~i.e., deviations
from local uniformity! is observed in a wide variety of quan
tum chaotic systems. Spectra of complex nuclei, atoms, m
ecules, disordered mesoscopic systems, and microwave
ties provide experimental verification of the universali
Numerical and semiclassical studies of chaotic systems
few degrees of freedom as well as studies of zeros of
Riemann zeta function confirm the same. The observed fl
tuations are in close agreement with the analytic results
the Gaussian ensembles of random matrices@1–6#.

The Gaussian ensembles have been studied as mathe
cal tools rather than as physical models. For example,
predicted level density, viz., the ‘‘semicircle,’’ does not co
respond to any known physical system. It is therefore
interest @7# to study matrix ensembles with non-Gaussi
weight functions, which give very different level densitie
Our main aim in this paper is to establish rigorously t
universal behavior of energy-level fluctuations for a wi
class of matrix ensembles. This would provide a firm just
cation for the universality found in physical systems. T
second aim of this paper is to develop the theory of ske
orthogonal polynomials, necessary, as shown by Dyson@7,8#,
for such a study. A brief account of this work has been giv
elsewhere@9#.

As in the Gaussian case, we follow the threefold class
cation to take account of the fundamental symmetries of
system, and study ensembles of three types of matrices,
real symmetric, complex Hermitian, and self-dual quatern
real @1#. The three types of ensembles will be characteriz
by the parameterb, with values 1,2,4, respectively, denotin
the number of real ‘‘sites’’ in each off-diagonal matrix el
ment. The ensembles will be invariant under orthogonal, u
tary, and symplectic transformations respectively in the th
cases, being therefore referred to as orthogonal, unitary
1063-651X/2002/65~4!/046221~21!/$20.00 65 0462
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symplectic ensembles—OE, UE, and SE in short. A furth
mathematical requirement that the matrix weight function
separable in eigenvalues would complete the definition of
ensembles that we consider. It turns out that, with the Ga
ian weight functions, the distinct matrix elements are sta
tically independent, but not so with the other weight fun
tions. It is then possible to deal with matrix ensemb
having a specified level density@7,10#. Such ensembles wil
be of direct relevance to many-body systems such as c
plex nuclei@2# and mesoscopic systems@4,5#.

Dyson @7# has shown that the eigenvalue-density corre
tion functions can be written in terms of standard orthogo
polynomials in the unitary case, and in terms of certa
skew-orthogonal polynomials in the orthogonal and sy
plectic cases. A major part of the paper will be concern
with the derivation of the skew-orthogonal polynomials f
the Jacobi class of weight functions, giving thereby gener
zations of some initial results of Mehta@8#. Their asymptotic
forms will then establish the universality for the Jacobi e
sembles, as reported earlier in the unitary case by Fox
Kahn @11#. For more general weight functions, we shall d
rive matrix-integral representations of the polynomia
which are more amenable to asymptotic studies@12,13#. Fi-
nally, we shall propose an ansatz for the asymptotic forms
the polynomials, as in Ref.@14#, whereby universality will be
established more generally. It should be emphasized tha
three types of the universal energy-level fluctuations will n
only be independent of the weight function, but also ind
pendent of the location in the spectrum~‘‘stationarity’’ @15#!.
For other recent work on non-Gaussian matrix ensemb
we refer to Refs.@4,5# and references therein.

In Sec. II, we give the basic definitions along with a d
cussion of level densities in the general ensembles an
brief review of the~asymptotic! correlation functions for the
Gaussian ensembles. Sections III, IV, V, and VI are co
cerned with the correlation functions for the Jacobi e
©2002 The American Physical Society21-1
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sembles~including the limiting cases of associated Lague
and Hermite or Gaussian!, respectively, for UE, OE~even
dimensions!, OE ~odd dimensions!, and SE. Section VII
gives the matrix-integral representations of the polynom
and the ansatz for the asymptotic forms. Our results are s
marized in the concluding section.

II. LEVEL DENSITY AND CORRELATION FUNCTIONS

We consider ensembles ofN-dimensional Hermitian ma
trices ~H! with the probability distribution@7#

Pb,N~H !dH5Cb,N exp@2tru~H !#dH, ~2.1!

where the parameterb, defined in Sec. I, denotes whetherH
is real symmetric, complex Hermitian or quaternion-re
self-dual,dH being the infinitesimal volume element in th
space of these matrices. The matrix functionu(H) is defined
by the power expansion of the functionu(z), and Cb,N is
fixed by the normalization condition. The Gaussi
ensembles—GOE, GUE, and GSE, respectively, forb
51,2,4—are obtained withu(z)5z2/2v2, v being a scale
parameter. From the invariance of the ensembles, the jo
probability density of the eigenvalues (x1 ,x2 , . . . ,xN) is ob-
tained easily@7#,

Pb,N~x1 , . . . ,xN!5cb,NuDN~x1 , . . . ,xN!ub)
j 51

N

w~xj !,

~2.2!

wherecb,N is another normalization constant,

DN~x1 , . . . ,xN!5)
j ,k

~xj2xk! ~2.3!

is the Vandermonde determinant, and

w~x!5exp@2u~x!# ~2.4!

is the weight function. It is sometimes helpful to think of th
ensemble distribution~2.1! as coming from an information
theory approach@10# or as the equilibrium density of a
Brownian-motion process@7#; in the former case the functio
u ~and hence the weight functionw) comes from the con-
straints on the ensemble, while in the latter caseu plays the
role of a potential.

The n-eigenvalue orn-level density correlation function
@1,7# Rn ~for n51,2,3, . . . ,N) is defined by

Rn~x1 , . . . ,xn!5
N!

~N2n!! E dxn11 . . . E dxN

3P~x1 , . . . ,xN!, ~2.5!

and gives the probability density of findingn eigenvalues at
x1 ,x2 , . . .xn , irrespective of the positions of the remainin
eigenvalues.R1(x) is the level density, with

D~x!5@R1~x!#21 ~2.6!
04622
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being the mean level spacing atx for largeN. To describe the
energy level fluctuations in the neighborhood ofx, we first
‘‘unfold’’ the spectrum locally by

xj5x1r jD~x!, j 51,2, . . . ,n. ~2.7!

Then

Rn~r 1 ,r 2 , . . . ,r n ;x!5 lim
N→`

~D~x!!nRn~x1 , . . . ,xn!

~2.8!

is then-level correlation function for the unfolded spectra.
the cases we consider in this paper,Rn will be independent
of x, being thus stationary.

The Jacobi weight function, the main topic of concern
Secs. III–VI, is given by

wa,b5~12x!a~11x!b, uxu,1,

50, uxu.1, ~2.9!

wherea.21, b.21. The classical~orthogonal! polyno-
mials @16# derive from the Jacobi weight function. Thus, fo
a5b, we have the Gegenbauer, which includes Legendre
a5b50 and the two Chebyshev fora5b56 1

2 . Also by
rescalingx and then lettinga5b→`, we get the Hermite or
Gaussian weight function,

wG~x!5exp~2bx2/2!, ~2.10!

whereb has been inserted in the exponent to make co
spondence with the results of Ref.@1#. Moreover, by shifting
the origin, then rescalingx,w, and lettingb→` we get the
associated Laguerre weight function,

wa~x!5xae2x, x.0,

50, x,0, ~2.11!

where a.21. Besides the Jacobi, we shall also consid
@14# in Sec. VII the case when the ‘‘potential’’u(x)
52 ln w(x) is a low-order polynomial.

We now give a general procedure for deriving the lev
density for largeN. Since

]P~x1 , . . . ,xN!

]x1
5S b(

j 5” 1

1

x12xj
1

w8~x1!

w~x1! DP~x1 , . . . ,xN!,

~2.12!

we find from Eq.~2.5! an exact hierarchic set of relation
linking Rn to Rn11 @17–19#. For n51, this gives

]R1~x!

]x
5bE R2~x,y!

x2y
dy1

w8~x!

w~x!
R1~x!. ~2.13!

For largeN, the integral on the right-hand side can be r
placed by a principal-value integral involvingR2(x,y)
'R1(x)R1(y); moreover ]R1 /]x can be dropped. Both
these approximations can be rigorously justified from
behavior ofR1 andR2 for largeN. We thus find@7,5,17#
1-2
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bR1~x!E R1~y!

x2y
dy1

w8~x!

w~x!
R1~x!50, ~2.14!

a result that could also be derived directly by maximizi
ln P. Note that Eq.~2.14! is valid whenw5” 0. Moreover,R1
is zero whenw50 but it can also be zero elsewhere as,
example, in the Gaussian and Laguerre cases below.
solve below the integral equation~2.14!, using the resolven
@20#

G~z!5E R1~y!

z2y
dy, ~2.15!

which satisfies

G~x1 i0!5E R1~y!

x2y
dy2 ipR1~x!. ~2.16!

For the Jacobi weight function~2.9!, one needs to con
sider carefully the singularities ofw8/w at x561. Since
R1(x)50 for uxu.1, andO(N) for uxu<1, we find from Eq.
~2.14!, after multiplication by (12x2)/(z2x) and integra-
tion overx, that

E
21

1

dx
~12x2!R1~x!

z2x E
21

1

dy
R1~y!

x2y
50, ~2.17!

terms ignored being of lower order inN. The expression on
the left can be written as

1

2E E
21

1

dxdy
R1~x!R1~y!

x2y S 12x2

z2x
2

12y2

z2y D
5

1

2E E
21

1

dxdy
R1~x!R1~y!

~z2x!~z2y!
$12z~x1y!1xy%

5
1

2
~12z2!G21

N2

2
. ~2.18!

Thus, sinceG(z)'N/z for large uzu, we get

G~z!5
N

Az221
, ~2.19!

and

R1~x!5
N

pA12x2
, uxu,1,

50, uxu.1, ~2.20!

the result being the same for all finite values of the para
etersa,b. Note that the level density becomes indefinite
large at the end points. For the associated Laguerre we
function ~2.11!, R1(x)50 for x,0, andw8/w has a singu-
larity at x50. In this case we find from Eq.~2.14!, after
multiplication by x/(z2x), integration overx, and neglect-
ing the ~lower order! aG(z) term, that
04622
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0

` xR1~x!

z2x
dx1bE

0

`

dx
xR1~x!

z2x E
0

`

dy
R1~y!

x2y
50,

~2.21!

so that

bzG222zG12N50, ~2.22!

giving

G~z!5
1

b
2

1

b
Az22bN

z
, ~2.23!

and

R1~x!5
1

pb
A2bN2x

x
, 2bN.x.0,

50, x,0 or x.2bN, ~2.24!

again independent of the parametera, but different from the
Jacobi result~2.20!. Finally, in the Gaussian case@20#, we
get from Eqs.~2.10!, ~2.14!,

2E
2`

` xR1~x!

z2x
dx1E

2`

`

dx
R1~x!

z2x E
2`

`

dy
R1~y!

x2y
50,

~2.25!

implying

G222zG12N50. ~2.26!

Thus

G~z!5z2Az222N, ~2.27!

and

R1~x!5
1

p
A2N2x2, uxu,A2N,

50, uxu.A2N, ~2.28!

the last result being the well-known semicircular density@1#.
One can similarly obtain results forG(z) and R1(x) when
u(x) is O(N) and a low-order polynomial; this gives resul
different from above.

The polynomial methods discussed in Secs. III–VI w
confirm the above density results. We shall also find that
unfolded correlation functionsRn are universal, being inde
pendent of the weight function and location in the spectru
We summarize here the results forRn , first obtained for the
Gaussian and circular ensembles@21,22,7,1#. We have for the
three types of ensembles

Rn
(b)~r 1 , . . . ,r n!5Q det@sb~r j2r k!# j ,k51, . . . ,n

5$det@sb~r j2r k!#%
1/2,

~2.29!

where
1-3
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s2~r !5S S~r ! 0

0 S~r !
D , ~2.30!

s1~r !5S S~r ! D~r !

I ~r !2e~r ! S~r !
D , ~2.31!

s4~r !5S S~2r ! D~2r !

I ~2r ! S~2r !
D , ~2.32!

S~r !5sin~pr !/pr , ~2.33!

D~r !5dS~r !/dr, ~2.34!

I ~r !5E
0

r

S~r 8!dr8, ~2.35!

e~r !5r /2ur u. ~2.36!

The quaternion determinant (Q det! in Eq. ~2.29! has a de-
terminantlike expansion in terms of the quaternion ma
elements sb(r j2r k) of the n-dimensional ‘‘self-dual’’
quaternion matrix. In fact, it is square root of th
(2n)-dimensional ordinary determinant, as given in the l
step of Eq.~2.29!; for example, forb52, Rn is simply
det@S(r j2r k)#. The function S(r ), from which all other
functions above derive, will be seen in the following sectio
as the asymptotic form of a kernel function involving o
thogonal polynomials forb52 and skew-orthogonal polyno
mials for b51,4. The universality ofRn will follow from
that of the asymptotic kernel functionS(r ).

III. JACOBI UNITARY ENSEMBLES

The unitary ensemble is easiest to study because the
relation functions can be written in terms of the orthogo
polynomials. Fox and Kahn@11# showed the universality fo
the Jacobi and Laguerre weight functions in the region of
spectrum where the level density is ‘‘flat.’’ We follow her
the method of Ref.@15# to extend the universality to all re
gions where the density is finite and nonzero. Some of
methods used here will also be helpful in the following se
tions.

The correlation functions in the unitary case (b52) can
be written as@7#

Rn~x1 , . . . ,xn!5det@SN
(2)~xj ,xk!# j ,k51, . . . ,n , ~3.1!

whereSN
(2)(x,y) is the kernel function

SN
(2)~x,y!5w~x! (

j 50

N21

~hj !
21pj~x!pj~y!. ~3.2!

Thepj (x) are orthogonal polynomials of orderj defined with
respect to the weight functionw(x) by

E pj~x!pk~x!w~x!dx5hjd jk , ~3.3!
04622
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hj being the normalization constant. Using the Christoff
Darboux formula@16#, we can perform the sum in Eq.~3.2!
to obtain

SN
(2)~x,y!5

w~x!

hN21

kN21

kN
S pN~x!pN21~y!2pN~y!pN21~x!

x2y D ,

~3.4!

where kN is the coefficient ofxN in pN(x). This form is
useful in deriving the large-N behavior ofKN . The level
density is given by

R1~x!5SN
(2)~x,x!, ~3.5!

and, therefore, from Eq.~2.8!, SN
(2)(x,y)/SN

(2)(x,x) for large
N will be required to calculate the unfolded correlation fun
tion Rn

(2) .
For the Jacobi weight function~2.9!, the pj (x) are the

Jacobi polynomialsPj
a,b(x) @16#, with

hj
a,b5

2a1b11

~2 j 1a1b11!

G~ j 1a11!G~ j 1b11!

G~ j 11!G~ j 1a1b11!
, ~3.6!

kj
a,b5

1

2 j S 2 j 1a1b

j D . ~3.7!

For largej and finitea,b with x5cosu (0,u,p), we have
the asymptotic form

~hj
a,b!21/2@wa,b~x!#1/2Pj

a,b~x!

5A 2

p sinu
cosF S j 1

a1b11

2 D u2S a1
1

2D p

2 G ,
~3.8!

where we have used Ref.@16# and hj
a,b.2(a1b) j 21. Here,

and in other asymptotic results below, it should be und
stood that terms of lower order inj for fixed u are being
ignored. The asymptotic form is valid for allu except within
a rangeO( j 21) of the end points.~Also, in Laguerre and
Hermite cases below, the asymptotic polynomials fall off e
ponentially outside the intervals specified.! Now, substituting
Eqs.~3.6!–~3.8! in Eq. ~3.4! we find, for largeN,

SN
(2)~x,y!5

sin~NDu!

pDu sinu
5

sin@N~12x2!21/2Dx#

pDx
, ~3.9!

where we have takeny[x1Dx5cos(u1Du) with Du
5O(1/N). Thus, withDu→0, we have the level density

R1~x!5
N

p sinu
5

N

pA12x2
, uxu,1, ~3.10!

as derived earlier~2.20!. Moreover,

lim
N→`

SN
(2)~x,y!

SN
(2)~x,x!

5
sinpr

pr
5S~r !, ~3.11!
1-4
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where r 5DxR1(x)52p21NDu. @When Du5O(1), the
above limit is zero.# Using Eqs.~3.1!, ~3.10!, and ~3.11! in
Eq. ~2.8! we rederive the unfolded correlation function
Eqs.~2.29!, ~2.30!. Note that the final result forRn

(2) is inde-
pendent ofx, as well asa,b, proving thereby the stationarit
as well as universality for this class of weight function.

For the associated Laguerre weight function~2.11!, the
pj (x) are the associated Laguerre polynomialsL j

(a)(x) @16#,
with

hj
(a)5

G~ j 1a11!

j !
, ~3.12!

kj
(a)5

~21! j

j !
. ~3.13!

For large j and finite a with x5(4 j 12a12)cos2u,
0,u,p/2, we have@16#

~hj
(a)!21/2@wa~x!#1/2L j

(a)~x!

5
~21! j

A2p j sinu cosu
sinF @ j 1~a11!/2#

3~sin 2u22u!1
3p

4 G , ~3.14!

wherehj
(a). j a. For givenx, u depends onj; for example,

u j2u j 71.6(2 j tanu j )
21. Then with u[u j , we can also

write

~hj 71
(a) !21/2@wa~x!#1/2L j 71

(a) ~x!

5
~21! j 21

A2p j sinu cosu
sinF @ j 1~a11!/2#

3~sin 2u22u!62u1
3p

4 G . ~3.15!

Using Eqs.~3.14!, ~3.15! in Eq. ~3.4! with u[uN , we get for
largeN

SN
(2)~x,y!5

sin~4NDu sin2u!

8pNDu sinu cosu

5

sinF1

2
~4N2x!1/2x21/2DxG

pDx
, ~3.16!

where x54N cos2u, y[x1Dx54Ncos2(u1Du), and Du
5O(1/N). With Du→0, we have the level density

R1~x!5
tanu

2p
5

1

2p
A4N2x

x
, 0,x,4N, ~3.17!

as in Eq. ~2.24! with b52, while, with r 5DxR1(x)
52p214N Du sin2u, we have theS(r ) function as in Eq.
~3.11!. This proves stationarity and universality ofRn

(2) in the
associated Laguerre case.
04622
For the Gaussian weight function~2.10! ~with b52), the
pj (x) are the Hermite polynomials@16# H j (x), with

hj5p1/22 j j !, ~3.18!

kj52 j , ~3.19!

having the asymptotic form@16#

~hj !
21/2e2x2/2H j~x!

5
1

Ap sinu
S 2

j D
1/4

sinF ~ j /211/4!~sin 2u22u!1
3p

4 G ,
~3.20!

for x5(2 j 11)1/2cosu, 0,u,p. As in the Laguerre case
with u[u j , we can also write

~hj 71!21/2e2x2/2H j 71~x!5
1

Ap sinu
S 2

j D
1/4

sinF ~ j /211/4!

3~sin 2u22u!6u1
3p

4 G ,
~3.21!

where we have used againu j2u j 71.6(2 j tanu j )
21. Using

u andu1Du for x,y with j 5N, we find @15#

SN
(2)~x,y!5

sin~2NDu sin2u!

pA2NDu sinu
5

sin@~2N2x2!1/2Dx#

pDx
,

~3.22!

giving

R1~x!5
A2N

p
sinu5

A2N2x2

p
, uxu,A2N, ~3.23!

as in Eq.~2.28! andS(r ) as in Eq.~3.11! with r 5DxR1(x)
52p212NDu sin2u.

The orthogonal polynomials and their asymptotic form
will be needed to work out the skew-orthogonal polynomi
and their asymptotic forms in the following sections. We a
remark that, instead of the Christoffel-Darboux summati
we could have directly obtained the asymptoticSN

(2)(x,y) by
using the asymptotic forms of the polynomials in Eq.~3.2!
and replacing the sum by an integral overj for fixed x,y; this
procedure will be useful in the skew-orthogonal cases. Mo
over, the asymptotic forms~3.8!, ~3.14!, and ~3.20! of the
polynomials, when written in terms ofR1, are generalizable
see Sec. VII.

IV. JACOBI ORTHOGONAL ENSEMBLES „EVEN
DIMENSION …

Dyson@7,8# has given formal expressions for the corre
tion functions, analogous to Eqs.~3.1!–~3.3!, for the b
51,4 cases. These are given in terms of skew-orthogo
polynomials. There are three types of skew-orthogonal po
nomials needed, corresponding tob51 ~even-N case!,
1-5
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b51 ~odd-N case!, andb54. The universality of correla-
tion functions will follow from the asymptotic properties o
these polynomials. We consider in this section the first ty
for the Jacobi family.

The skew-orthogonal polynomialsqj (x) of orderj, appro-
priate forb51 ~even-N case!, are defined by

E E qj~x!qk~y!w~x!w~y!e~x2y!dxdy5gjZjk ,

~4.1!

whereZ is the canonical antisymmetric matrix with matr
elements

Zjk51, j 5even, k5 j 11,

521, j 5odd, k5 j 21,

50, otherwise, ~4.2!

where j ,k50,1,2, . . . , andgj is the normalization constan
with the propertyg2m5g2m11. The antisymmetric integral in
Eq. ~4.1! is nonzero for each pair of polynomialsq2l ,q2l 11,
implying thereby separate patterns for even- and odd-o
polynomials. Apart from the normalization, the even-ord
polynomials are unique, but to the odd-order ones, any m
tiple of thenext lower even-order polynomial can be adde
Unlike the orthogonal polynomials, theqj do not satisfy any
three-term recursion relation. However, a Gram-Schmidt-
procedure can be used to construct the polynomials. We
remark that, in Refs.@7–9#, the polynomials used are no
malized to unity.

To write Eq.~4.1! and other relations in compact form, w
introduce the weighted polynomialsf j (x) and their integrals
c j (x),

f j~x!5w~x!qj~x!5
dc j~x!

dx
, ~4.3!

c j~x!5E e~x2y!f j~y!dy, ~4.4!

with e defined in Eq.~2.36!. Then Eq.~4.1! is equivalent to

E f j~x!ck~x!dx5gjZjk . ~4.5!

We define the kernels

SN
(1)~x,y!5 (

j ,k50

N21

~gj !
21Zjkf j~x!ck~y!

5 (
m50

(N/2)21

~g2m!21@f2m~x!c2m11~y!

2f2m11~x!c2m~y!#, ~4.6!

SN
(1)†~x,y!52 (

j ,k50

N21

~gj !
21Zjkc j~x!fk~y!5SN

(1)~y,x!,

~4.7!
04622
e

er
r
l-
.

e
so

DN
(1)~x,y!52 (

j ,k50

N21

~gj !
21Zjkf j~x!fk~y!52

]SN
(1)~x,y!

]y
,

~4.8!

I N
(1)~x,y!5 (

j ,k50

N21

~gj !
21Zjkc j~x!ck~y!

5E e~x2z!SN
(1)~z,y!dz, ~4.9!

e~x,y!5e~x2y!. ~4.10!

In terms of the quaternion kernel,

QN~x,y!5S SN
(1) DN

(1)

I N
(1)2e SN

(1)†D , ~4.11!

the correlation functions for (b51,N5even) are given by

Rn~x1 , . . . ,xn!5Q det@QN~xj ,xk!# j ,k51, . . . ,n ,
~4.12!

with Q det defined in the second step of Eq.~2.29!.
SinceDN

(1)(x,x)5I N
(1)(x,x)5e(x,x)50, the level density

is given by

R1~x!5SN
(1)~x,x!. ~4.13!

For the universality, we need to prove that, wi
(y2x)R1(x)5r ,

lim
N→`

SN
(1)~x,y!

SN
(1)~x,x!

5S~r !. ~4.14!

In that case, it would follow from Eqs.~4.8!, ~4.9! that

lim
N→`

DN
(1)~x,y!

@SN
(1)~x,x!#2

5D~r !, ~4.15!

and

lim
N→`

I N
(1)~x,y!5I ~r !, ~4.16!

giving thereby the unfolded correlation functionRn
(1) of Eqs.

~2.29!, ~2.31!. Note that Eqs.~4.13! and~4.14! are also valid
whenSN

(1) is replaced bySN
(1)† . Thus we would be concerne

with Eqs.~4.13! and ~4.14! only.
The skew-orthogonal polynomials appropriate in this ca

for the Jacobi weight functionwa,b(x) of Eq. ~2.9! are best
described in terms of the Jacobi orthogonal polynomi
Pj

2a11,2b11(x) corresponding to the weight functio
w2a11,2b11(x). Note that

wa,b~x!wa11,b11~x!5w2a11,2b11~x!, ~4.17!

wa11,b11~x!5~12x2!wa,b~x!, ~4.18!
1-6
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the latter vanishing atuxu51 for all a.21, b.21. These
relations are useful in proving the results given below. D
tailed proofs are given in Appendix A. We find that

f2m~x!5wa,b~x!P2m
2a11,2b11~x!, ~4.19!

c2m11~x!5wa11,b11~x!P2m
2a11,2b11~x!, ~4.20!

with

g2m5g2m115h2m
2a11,2b11 . ~4.21!

The even-orderc2m and odd-orderf2m11 are obtained by
integrating Eq.~4.19! and differentiating Eq.~4.20!, respec-
tively:

c2m~x!5
1

A2m
wa11,b11~x!P2m21

2a11,2b11~x!

1g2m22c2m22~x! ~m5” 0!, ~4.22!

c0~x!5E e~x2y!wa,b~y!dy, ~4.23!

f2m11~x!5wa,b~x!@A2m11P2m11
2a11,2b11~x!

2B2m21P2m21
2a11,2b11~x!#, ~4.24!

where

g j5
~ j 12a12!~ j 12b12!

~ j 12!~ j 12a12b14!
, ~4.25!

Aj52
j ~ j 12a12b12!

~2 j 12a12b11!
, ~4.26!

Bj52
~ j 12a12!~ j 12b12!

~2 j 12a12b15!
, B2150. ~4.27!

An important relation here is

d

dx
$wa11,b11~x!Pj

2a11,2b11~x!%5wa,b~x!

3$Aj 11Pj 11
2a11,2b11~x!2Bj 21Pj 21

2a11,2b11~x!%,

~4.28!

which is helpful in obtaining Eqs.~4.19!, ~4.24! from Eqs.
~4.22!, ~4.20!. The normalization~4.21! is obtained by using
Eqs. ~4.19!, ~4.20! in Eq. ~4.5!. Note finally that the skew-
orthogonal polynomialsqj (x) aref j (x)/wa,b(x). Mehta@8#
has considereda5b50, the Legendre case.

The asymptotic forms are derived by using Eq.~3.8! in
the above results. SinceAj'Bj'2 j /2 andg j'1 for largej,
we find, for largem,
04622
- ~g2m!21/2f2m~x!5A 2

p sin3u
cosF S 2m1a1b1

3

2D u

2S 2a1
3

2Dp

2 G , ~4.29!

~g2m!21/2c2m11~x!5A2 sinu

p
cosF S 2m1a1b1

3

2D u

2S 2a1
3

2Dp

2 G , ~4.30!

~g2m!21/2c2m~x!52
1

mA2p sinu
sinF S 2m1a1b1

3

2D u

2S 2a1
3

2Dp

2 G , ~4.31!

~g2m!21/2f2m11~x!52mA 2

p sinu
sinF S 2m1a1b1

3

2D u

2S 2a1
3

2Dp

2 G . ~4.32!

Note that Eq.~4.31! is derived by partial integration of Eq
~4.29! to the leading order. However, there is an addition
constant term~for a5” b) of orderm21/2, which obtains from
the lower-order terms in the series in Eq.~4.22!; this does not
affect Eq. ~4.34! below for Du5O(N21) and is ignored.
Thus we have

1

g2m
@f2m~x!c2m11~y!2f2m11~x!c2m~y!#

5
2 cos~2mDu!

p sinu
, ~4.33!

so that

SN
(1)~x,y!5E

0

N/2 2 cos~2mDu!

p sinu
dm5

sin~NDu!

pDu sinu
.

~4.34!

With Du→0, we obtain the level density~3.10! or ~2.20!
while, for Du5O(N21), we obtain, as in Eq.~3.11!, the
result~4.14! for b51. We have thus proved the universali
of Rn

(1) for finite a,b and uxu,1.
The skew-orthogonal polynomials for the associated

guerre weight functionwa(x) of Eq. ~2.11! are derived from
the above Jacobi results and are given in terms of the a
ciated Laguerre orthogonal polynomialsL j

(2a11)(2x) corre-
sponding to the weight functionw2a11(2x); see Appendix
A. Note here that Eqs.~4.17!, ~4.18! are now replaced by

22a11wa~x!wa11~x!5w2a11~2x!, ~4.35!

wa11~x!5xwa~x!, ~4.36!
1-7
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the latter vanishing atx50 for all a.21. We find now,
instead of Eqs.~4.19!–~4.21!,

f2m~x!52a11/2wa~x!L2m
(2a11)~2x!, ~4.37!

c2m11~x!52a13/2wa11~x!L2m
(2a11)~2x!, ~4.38!

with

g2m5g2m115h2m
(2a11) . ~4.39!

Similarly we find, instead of Eqs.~4.22!–~4.28!,

c2m~x!5
2a13/2

A2m
L

wa11~x!L2m21
(2a11)~2x!

1g2m22
L c2m22~x! ~m5” 0!, ~4.40!

c0~x!52a11/2E e~x2y!wa~y!dy, ~4.41!

f2m11~x!52a11/2wa~x!@A2m11
L L2m11

(2a11)~2x!

2B2m21
L L2m21

(2a11)~2x!#, ~4.42!

where

g j
L5

~ j 12a12!

~ j 12!
, ~4.43!

Aj
L5 j , ~4.44!

Bj
L5 j 12a12, B21

L 50. ~4.45!

We also have

d

dx
$wa11~x!L j

(2a11)~2x!%5
1

2
wa~x!$Aj 11

L L j 11
(2a11)~2x!

2Bj 21
L L j 21

(2a11)~2x!%, ~4.46!

again helpful in the derivation of Eqs.~4.40!–~4.42!. With
x5(4m12a12)cos2u, the asymptotic form for
L j

(2a11)(2x) is obtained from Eq.~3.14!. Thus

~g2m!21/2f2m~x!5
1

4mAp sinu cos3u
sinF ~2m1a11!

3~sin 2u22u!1
3p

4 G , ~4.47!

~g2m!21/2c2m11~x!5
2

Ap tanu
sinF ~2m1a11!

3~sin 2u22u!1
3p

4 G , ~4.48!
04622
~g2m!21/2c2m~x!52
1

4mAp sin3u cosu
cosF ~2m1a11!

3~sin 2u22u!1
3p

4 G , ~4.49!

~g2m!21/2f2m11~x!52Atanu

p
cosF ~2m1a11!

3~sin 2u22u!1
3p

4 G , ~4.50!

where, as in Eq.~4.31!, the additional constant term of orde
m21/2 in Eq. ~4.49! has been ignored. We have thus

1

g2m
@f2m~x!c2m11~y!2f2m11~x!c2m~y!#

5
cos~8mDu sin2u!

2pm sinu cosu
5

2 cos@x21/2~4m2x!1/2Dx#

px1/2~4m2x!1/2
,

~4.51!

where in the last stepDx528m Du sinu cosu. Using the
last form of Eq.~4.51! ~sinceu varies withm but x does not!,
we find

SN
(1)~x,y!5E

x/4

N/2 2 cos@x21/2~4m2x!1/2Dx#

px1/2~4m2x!1/2
dm

5
sin„x21/2~2N2x!1/2Dx…

pDx
. ~4.52!

Again, Dx→0 gives

R1~x!5
1

p
A2N2x

x
, 0,x,2N, ~4.53!

consistent with Eq.~2.24! for b51, while DxR1(x)5r with
N→` gives the universal result~4.14!.

In the Gaussian case,~2.10! with b51, the Hermite poly-
nomials H j (x) corresponding to@w(x)#25exp(2x2) are
again encountered. The skew-orthogonal polynomials can
either derived as the limiting case (a5b→`) of the Jacobi
results ~see Appendix A! or read directly from the
correlation-function results of Ref.@1#. We have

f2m~x!5e2x2/2H2m~x!, ~4.54!

c2m11~x!5e2x2/2H2m~x!, ~4.55!

g2m5g2m115h2m , ~4.56!

c2m~x!522e2x2/2H2m21~x!12~2m21!c2m22~x!

~mÞ0!, ~4.57!
1-8
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c0~x!5E
0

x

e2y2/2H0~y!dy, ~4.58!

f2m11~x!5e2x2/2@2~1/2!H2m11~x!12mH2m21~x!#.
~4.59!

The corresponding asymptotic forms are obtained from
~3.20!. Using x5(4m11)1/2cosu, we get Eq.~3.20! for
(g2m)21/2f2m and (g2m)21/2c2m11 with j 52m, while for
c2m andf2m11 we have

~g2m!21/2c2m~x!52
1

2m3/4Ap sin3u
cosF ~m11/4!

3~sin 2u22u!1
3p

4 G , ~4.60!

~g2m!21/2f2m11~x!52m1/4Asinu

p
cosF ~m11/4!

3~sin 2u22u!1
3p

4 G . ~4.61!

There is no additional constant term in Eq.~4.60!. Then, as
in the Laguerre case,

SN
(1)~x,y!5E

x2/4

N/2 2 cos„A~4m2x2!Dx…

pA4m2x2
dm

5
sin„A~2N2x2!Dx…

pDx
. ~4.62!

This gives the level density~2.28! when Dx→0 while
DxR1(x)5r with N→` gives the universal result~4.14!.

V. JACOBI ORTHOGONAL ENSEMBLES „ODD
DIMENSION …

WhenN is odd, the formal results of Sec. IV have to b
modified@7# because the last skew-orthogonal polynomia
unpaired and its normalization is left arbitrary by Eq.~4.1!.
In this case we supplement Eq.~4.1! by the extra condition

E qj~x!w~x!dx5d j ,N21 , ~5.1!

and introduce the additional kernels

M ~x,y!5fN21~x!, M†~x,y!5fN21~y!, ~5.2!

m~x,y!5cN21~x!, m†~x,y!5cN21~y!. ~5.3!

The result~4.12! is still valid if we define the quaternionQ
for b51, N odd, by

QN~x,y!5S SN21
(1) 1M DN21

(1)

I N21
(1) 2e1m2m† SN21

(1)† 1M†D , ~5.4!

instead of Eq.~4.11!.
04622
q.

s

Because of the extra condition~5.1! skew-orthogonal
polynomialsqj (x) of order j cannot be constructed. How
ever, we can constructqj (x) of order j 11 for j 50, . . . ,
N22 and then constructqN21(x) of order N21; thus
qN22(x) and qN21(x) will both be of order (N21) while
there will be no polynomial of order 0.

For the Jacobi weight function~2.9!, we have, with
m50,1, . . . ,(N23)/2,

f2m~x!5wa,b~x!@P2m11
2a11,2b11~x!2cm#, ~5.5!

cm5E wa,b~y!P2m11
2a11,2b11~y!dy, ~5.6!

c2m11~x!5wa11,b11~x!P2m11
2a11,2b11~x!, ~5.7!

while

g2m5g2m115h2m11
2a11,2b11 , ~5.8!

and

fN21~x!5
wa,b~x!PN21

2a11,2b11~x!

E wa,b~y!PN21
2a11,2b11~y!dy

. ~5.9!

To prove these results, note first that, without the cons
cm , Eqs.~5.5!, ~5.7! satisfy the skew orthogonality as in Eq
~4.19!, ~4.20! of the preceding section. The constantcm en-
sures that the condition~5.1! is satisfied forf2m(x) without
affecting the skew-orthogonality with the other function
The condition~5.1! is automatically satisfied forf2m11(x),
becausec2m11(1)50. Finally,fN21(x) of Eq. ~5.9! is skew
orthogonal with the otherf ’s and is normalized according t
Eq. ~5.1!. The results forf2m11(x) and c2m(x) can be
worked out along the steps followed in Eqs.~4.22!–~4.28!.
For the asymptotic forms, Eqs.~4.29!–~4.32! apply with the
replacementm→m11/2 in the phases of the main cosin
and sine terms. Note that the additionalcm term in Eq.~5.5!
does not contribute to the asymptotic forms of the ker
function, nor do the additional terms involvingm andM. We
have thus the same level density and the universal unfo
correlation functions as in the even-N case.

For the associated Laguerre case, we have Eqs.~4.37!–
~4.39! with 2m→2m11 on the right hand sides and thecm
term of the type~5.5!,~5.6! for f2m(x). For fN21(x), we
have Eq.~5.9! with PN21

2a11,2b11→LN21
(2a11) . The asymptotic

forms ~4.47!–~4.50! again apply with the replacementm
→m11/2 in the phases.

For the Gaussian case, we again have Eqs.~4.54!–~4.56!
with 2m→2m11 on the right-hand side. In this case thecm
correction of the type~5.6! is not needed, ascm50. With
PN21→HN21 in Eq. ~5.9! we getfN21(x). These results are
identical with the Gaussian-ensemble results of Ref.@1#.

VI. JACOBI SYMPLECTIC ENSEMBLES

When b54, we require a different family of skew
orthogonal polynomialst j (x), defined by
1-9
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E @ t j~x!tk8~x!2tk~x!t j8~x!#w~x!dx5gjZjk . ~6.1!

@Our definition oft j (x) is related@8# to the definition in Ref.
@7# by a derivative operation#. Heregj is again a normaliza-
tion constant satisfyingg2m5g2m11. The t j polynomials can
be chosen to be of orderj with j 50,1,2, . . . , andhave other
properties similar to that ofqj discussed in Sec. IV. It will be
useful to write Eq.~6.1! as

E @f j~x!fk8~x!2fk~x!f j8~x!#dx5gjZjk , ~6.2!

where

f j~x!5@w~x!#1/2t j~x!. ~6.3!

To write the correlation functions, we define the kerne
analogous to Eqs.~4.6!–~4.9!, by

S2N
(4)~x,y!52 (

j ,k50

2N21

~gj !
21Zjkf j8~x!fk~y!, ~6.4!

S2N
(4)†~x,y!5S2N

(4)~y,x!, ~6.5!

D2N
(4)~x,y!5 (

j ,k50

2N21

~gj !
21Zjkf j8~x!fk8~y!52

]S2N
(4)~x,y!

]y
,

~6.6!

I 2N
(4)~x,y!52 (

j ,k50

2N21

~gj !
21Zjkf j~x!fk~y!5E

y

x

S2N
(4)~z,y!dz.

~6.7!

The correlation functions forb54 are then given by Eq
~4.12! with

QN~x,y!5S S2N
(4)~x,y! D2N

(4)~x,y!

I 2N
(4)~x,y! S2N

(4)†~x,y!
D . ~6.8!

We remark that the kernels~6.4!–~6.7! are somewhat differ-
ent from those given in Refs.@7,8#, but the correlation-
function determinants are the same. Our choice is conven
for asymptotic studies below. The level density is given b

R1~x!5S2N
(4)~x,x!, ~6.9!

as in Eq.~4.13! for b51. With DxR1(x)5r , we need to
prove that

lim
N→`

S2N
(4)~x,y!

S2N
(4)~x,x!

5S~2r !, ~6.10!

lim
N→`

D2N
(4)~x,y!

S2N
(4)~x,x!

5D~2r !, ~6.11!
04622
,

nt

lim
N→`

I 2N
(4)~x,y!

S2N
(4)~x,x!

5I ~2r !, ~6.12!

to obtain the universalRn of Eqs. ~2.29!, ~2.32! for b54.
Note also that, as forb51, Eqs.~6.9!, ~6.10! remain valid
with S2N

(4) replaced byS2N
(4)† . Since Eqs.~6.11!, ~6.12! follow

from Eq. ~6.10!, we would again be concerned only wit
Eqs.~6.9!, ~6.10!.

We consider first the Jacobi weight function~2.9!. As
shown in Appendix A, thet j8(x) can be written compactly in
terms of the Jacobi orthogonal polynomialsPj

a,b(x),

t2m118 ~x!5P2m
a,b~x!, ~6.13!

t2m8 ~x!5P2m21
a,b ~x!1h2mt2m228 ~x!, ~6.14!

whereh2m is a constant, given in Eq.~6.21! below. On inte-
gration, we find the polynomials:

t2m11~x!5
2

~2m1a1b!
@D2m11P2m11

a,b ~x!1E2m11P2m
a,b~x!

1F2m11P2m21
a,b ~x!#, ~6.15!

t2m~x!5
2

~2m1a1b21!
@D2mP2m

a,b~x!1E2mP2m21
a,b ~x!

1F2mP2m22
a,b ~x!#1h2mt2m22~x!. ~6.16!

Equations~6.13!–~6.16! are valid for m50,1,2, . . . , if we
take t j (x) andPj

a,b(x) as zero for negativej. In Eqs.~6.15!,
~6.16! we have used the indefinite integral

1

2
~ j 1a1b!E Pj

a,b~x!dx5Pj 11
a21,b21~x!5D j 11Pj 11

a,b ~x!

1Ej 11Pj
a,b~x!1F j 11Pj 21

a,b ~x!.

~6.17!

The integration constants have been put equal to zero
cause of skew orthogonality witht1(x). The constantsD j ,
Ej , F j , h j , andgj are given by

D j5
~ j 1a1b!~ j 1a1b21!

~2 j 1a1b!~2 j 1a1b21!
, ~6.18!

Ej5
~a2b!~ j 1a1b21!

~2 j 1a1b!~2 j 1a1b22!
, ~6.19!

F j52
~ j 1a21!~ j 1b21!

~2 j 1a1b21!~2 j 1a1b22!
, ~6.20!

h j5
~ j 1a21!~ j 1b21!~2 j 1a1b25!

~ j 21!~ j 1a1b21!~2 j 1a1b21!
, ~6.21!
1-10
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g2m5g2m115
2h2m

a,b

4m1a1b21
5

2a1b12G~2m1a11!G~2m1b11!

~4m1a1b11!~4m1a1b21!G~2m11!G~2m1a1b11!
. ~6.22!
d
s
y.

-

ng

-

.

For largej and largem,

D j52F j5
1

4
1O~ j 21!, Ej5O~ j 21!, ~6.23!

h j511O~ j 21!, g2m5
2a1b

4m2
1O~m23!, ~6.24!

and, in the same approximation,

t2m11~x!5
1

4m
@P2m11

a,b ~x!2P2m21
a,b ~x!#, ~6.25!

t2m~x!5
1

4m
$P2m

a,b~x!12(a1b)/2@wa,b~x!#21/2%.

~6.26!

Here in Eq.~6.26! the nonpolynomial term on the right-han
side is the large-m approximation for the lower-order term
in the series in Eq.~6.16! and has been verified numericall
Then, withx5cosu and using Eq.~3.8!, we find the leading
terms in the large-m expansion of the polynomials,

~g2m!21/2f2m11~x!52Asinu

pm
sinF S 2m1

a1b11

2 D u

2S a1
1

2D p

2 G , ~6.27!

~g2m!21/2f2m~x!5
1

2 H 1

Apm sinu
cosF S 2m1

a1b11

2 D u

2S a1
1

2D p

2 G11J , ~6.28!

~g2m!21/2f2m118 ~x!52A m

p sinu
cosF S 2m1

a1b11

2 D u

2S a1
1

2D p

2 G , ~6.29!

~g2m!21/2f2m8 ~x!5A m

p sin3u
sinF S 2m1

a1b11

2 D u

2S a1
1

2D p

2 G , ~6.30!

where Eqs.~6.29!, ~6.30! are obtained by a partial differen
tiation of Eqs.~6.27!, ~6.28!. With Du as defined before,
04622
1

g2m
@f2m~y!f2m118 ~x!2f2m11~y!f2m8 ~x!#5

cos~2mDu!

p sinu
,

~6.31!

where we have ignored the rapidly oscillating term arisi
from the constant in Eq.~6.28!. Hence

S2N
(4)~x,y!5E

0

Ncos~2mDu!

p sinu
dm5

sin~2NDu!

2pDu sinu
.

~6.32!

Again, we get, on appropriate limits, the level density~3.10!
from Eq. ~6.9!, and~6.10! for the kernel, confirming the sta
tionarity and universality forb54.

For the associated Laguerre weight function~2.11!, we
obtain from Eqs.~6.13!–~6.16!, after suitable limits~see Ap-
pendix A!,

t2m118 ~x!5L2m
(a)~x!, ~6.33!

t2m8 ~x!5L2m21
(a) ~x!1S 2m1a21

2m21 D t2m228 ~x!, ~6.34!

t2m11~x!52L2m11
(a) ~x!1L2m

(a)~x!, ~6.35!

t2m~x!52L2m
(a)~x!1L2m21

(a) ~x!1S 2m1a21

2m21 D t2m22~x!.

~6.36!

For a50, Eqs.~6.35!, ~6.36! give back the results of Ref
@8#, with the observation that any multiple oft2m(x) can be
added tot2m11(x). The normalization constant is given by

g2m5g2m1152h2m
(a) . ~6.37!

The results~6.35!,~6.36! derive from Eqs.~6.33!, ~6.34! from
the indefinite integral,

E L j
(a)~x!dx52L j 11

(a21)~x!52L j 11
(a) ~x!1L j

(a)~x!,

~6.38!

the constants of integration in Eqs.~6.35!, ~6.36! being
zero on skew orthogonality with t1(x). With
x5(8m12a14)cos2u corresponding effectively toj 52m
1 1

2 in Eq. ~3.14!, the asymptotic forms are given by

ug2mu21/2f2m11~x!5
1

Apm tanu
sinF ~2m111a/2!

3~sin 2u22u!1
3p

4 G , ~6.39!
1-11
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ug2mu21/2f2m~x!

52
1

2 H 1

2Apm cosu sin3u
cosF ~2m111a/2!

3~sin 2u22u!1
3p

4 G11J , ~6.40!

ug2mu21/2f2m118 ~x!5
1

2
Atanu

pm
cosF ~2m111a/2!

3~sin 2u22u!1
3p

4 G , ~6.41!

ug2mu21/2f2m8 ~x!5
1

8Apm cos3u sinu
sinF ~2m111a/2!

3~sin 2u22u!1
3p

4 G , ~6.42!

where we have usedug2mu, sinceg2m is negative. In deriving
Eq. ~6.40! we have used the large-m approximation

S 8m2x

2m D t2m~x!52@L2m
(a)~x!1L2m11

(a) ~x!#2
1

2 S 8m2x

2m D
3~2m!a/2@wa~x!#21/2, ~6.43!

which follows from the three-term recursion and a sum r
for L j

(a)(x) @16#. Ignoring, as in the Jacobi case, the rapid
oscillating term, we obtain

1

g2m
@f2m~y!f2m118 ~x!2f2m11~y!f2m8 ~x!#

5

cosF1

2
x21/2~8m2x!1/2DxG

px1/2~8m2x!1/2
, ~6.44!

so that

S2N
(4)~x,y!5E

x/8

N
cosF1

2
x21/2~8m2x!1/2DxG

px1/2~8m2x!1/2
dm

5

sinF1

2
x21/2~8N2x!1/2DxG

2pDx
. ~6.45!

Again, with Dx→0, we get the level density~2.24! corre-
sponding tob54, while the limit for finiter gives the uni-
versal result~6.10!.

We finally turn to the Gaussian case. We have now, w
w(x)5exp(22x2),

t2m118 ~x!52~2m11!H2m~xA2!, ~6.46!
04622
e

h

t2m8 ~x!54mH2m21~xA2!14mt2m228 ~x!, ~6.47!

t2m11~x!5
1

A2
H2m11~xA2!, ~6.48!

t2m~x!5
1

A2
H2m~xA2!14mt2m22~x!, ~6.49!

along with the normalization

g2m5g2m115~2m11!!p1/222m. ~6.50!

For large m, we have, withx5(2m13/2)1/2cosu corre-
sponding toj 52m11 andx→xA2 in Eq. ~3.20!,

~g2m!21/2f2m11~x!5
1

m1/4Ap sinu
sinF ~m13/4!

3~sin 2u22u!1
3p

4 G , ~6.51!

~g2m!21/2f2m~x!5
1

~4m!1/4H 1

2A2mp sin3u
cosF ~m13/4!

3~sin 2u22u!1
3p

4 G1
1

2J , ~6.52!

~g2m!21/2f2m118 ~x!52m1/4A2 sinu

p
cosF ~m13/4!

3~sin 2u22u!1
3p

4 G , ~6.53!

~g2m!21/2f2m8 ~x!52
1

~m!1/4A2p sinu
sinF ~m13/4!

3~sin 2u22u!1
3p

4 G . ~6.54!

Here, in deriving Eq.~6.52!, we have used the large-m ap-
proximation,

2A2t2m~x!5
1

4~2m2x2!
@2H2m12~xA2!14mH2m~xA2!#

1m21/4~g2m!1/2ex2
. ~6.55!

Now, using Eqs.~6.51!–~6.54! in S2N
(4) , we have,

S2N
(4)~x,y!5E

x2/2

N cos„2A~2m2x2!Dx…

pA2m2x2
dm

5
sin„2A~2N2x2!Dx…

2pDx
, ~6.56!
1-12
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so that we get the level density~2.28! with Dx→0, and the
universal kernel~6.10! for finite r.

VII. ASYMPTOTIC RESULTS FOR GENERAL WEIGHT
FUNCTIONS

We consider in this section a general procedure for obt
ing asymptotic forms of the polynomials without goin
through the tedious process of deriving their exact form
Our approach is similar to that of Brezin and Zee@14# who
considered theb52 case for weight functions of the typ
w(x)5exp@2NV(x)# whereV(x) is a low-order polynomial.
We consider all weight functions for which the level dens
R1(x) can be derived for largeN from Eq. ~2.14!, and the
polynomials of all three types. Our asymptotic results will
in conformity with those of Secs. IV, V, and VI and hence t
universality will follow for a wider class of weight functions
We also give exact integral representations of the polyno
als, extending thereby theb52 result of Szego~Ref. @16#
Chap. 2! and Eynard@12#, from which the asymptotics ca
be worked out rigorously.

We start with theb52 case. It is convenient to deal wit
the orthonormal set of functions

f j~x!5~hj !
21/2@w~x!#1/2pj~x!, ~7.1!

defined in terms of the orthogonal polynomialspj (x) of Sec.
III. We propose the ansatz that, for asymptoticj, f j (x) can
be written as

f j~x!5Aj~x!cos@Q j~x!1x~x!#, ~7.2!

where the amplitudeAj (x) is a slowly varying function ofj,
the phaseQ j (x) grows indefinitely with increasingj, and the
phasex(x) is either independent ofj or slowly varying with
j. Using Eq.~7.2! in Eq. ~3.5!, replacing summation by an
integral, and ignoring the rapidly oscillating contribution
the integral, we find, for largeN,

R1~x,N!5
1

2E0

N

@Aj~x!#2d j , ~7.3!

giving thereby the amplitude in terms of the level dens
R1(x, j ) of the j dimensional ensemble,

@Aj~x!#252
]R1~x, j !

] j
. ~7.4!

In the asymptotic case,R1 is also the density of zeros of th
polynomials. This is implicit in Chap. 6 of Ref.@16# in the
Jacobi case, but is observed to be true more generally f
the integral representations discussed later. The spacinD
(5R1

21) between the consecutive zeros off j is given by

Q j~x1D !2Q j~x!5D
]Q j

]x
5p, ~7.5!

where we have assumed thatD(x)ux8(x)u!1. Thus
04622
-

.

i-

m

Q j~x!5pE
c

x

R1~x8, j !dx8. ~7.6!

Here @c, d# is the support of the density functionR1. If we
use d instead ofc, the difference would bej p, changing
thereby only the sign of the polynomial. Any other choice
the lower limit will make x(x) j - dependent. With Eqs
~7.2!, ~7.4!, the orthonormality of thef j (x) is easily verified,

E f j~x!fk~x!dx

5
1

2Ec

d

dxAj~x!Ak~x!H cosFpE
c

x

@R1~x8, j !

2R1~x8,k!#dx8G1cosFpE
c

x

@R1~x8, j !

1R1~x8,k!#dx812x~x!G J
5E

c

d

dx
]R1~x, j !

] j
cosF ~ j 2k!pE

c

xS ]R1~x8, j !

] j Ddx8G
5d jk , ~7.7!

where both the terms in the first step vanish forj ,k large and
far apart, while the second step is for finiteu j 2ku. One can
also verify the three-term recursion relations asymptotica
Our final result~7.2! along with Eqs.~7.4! and~2.14! leaves
x(x) undetermined, but is consistent with the asymptotic
sults for Jacobi, associated Laguerre and Hermite polyno
als of Sec. III as well as with the Brezin and Zee ansatz
w(x)5exp@2NV(x)#. In the latter case note tha
N21R1(x,N) becomes independent ofN as is evident from
~2.14!. Chapter 12 of Ref.@16# discusses other generaliza
tions that are also consistent with our results.

TakingR150 for x,c andx.d, we can write the ansatz
in the form,

f j~x!5S 2]R1~x, j !

] j D 1/2

cosFpE
2`

x

R1~x8, j !dx81x~x!G ,
~7.8!

suitable for comparison with the ansatz forb51,4 below.
Here, without loss of generality, the sign ofAj (x) in Eq.
~7.8! has been taken to be positive. Moreover,R1(x, j ) fol-
lows from Eq.~2.14! with b52 andx(x) satisfies

U]x

] j U!1,
1

R1
U]x

]xU!1. ~7.9!

We believe that both quantities in Eq.~7.9! are of orderj 21.
Now, with summation replaced by an integral, the kernelSN

(2)

of Eq. ~3.2! for largeN is given by
1-13
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SN
(2)~x,x1Dx!5E

0

N

f j~x!f j~x1Dx!d j

5E
0

N]R1~x, j !

] j
cos„pR1~x, j !Dx…d j

5
sin„pR1~x,N!Dx…

pDx
, ~7.10!

so that the universal result,

lim
N→`

SN
(2)
„x,x1rD ~x!…

SN
(2)~x,x!

5
sinpr

pr
, ~7.11!

is obtained for a wide class of weight functions.
For the skew-orthogonal polynomials of theb51 type,

we redefinef j (x) of Eq. ~4.3! as

f j~x!5~gj !
21/2w~x!qj~x!5

dc j~x!

dx
. ~7.12!

Then, along withck(x) of Eq. ~4.4!, we have the skew-
orthonormality relation,

E f j~x!ck~x!dx5Zjk . ~7.13!

Now, we propose the ansatz

f2m~x!5pBm~x!R1~x,2m!

3cosFpE
2`

x

R1~x8,2m!dx81j~x!G ,
~7.14!

c2m11~x!5@pBm~x!R1~x,2m!#21

3
]R1~x,2m!

]m
cosFpE

2`

x

R1~x8,2m!dx81j~x!G ,
~7.15!

c2m~x!5Bm~x!sinFpE
2`

x

R1~x8,2m!dx81j~x!G ,
~7.16!

f2m11~x!52@Bm~x!#21
]R1~x,2m!

]m

3sinFpE
2`

x

R1~x8,2m!dx81j~x!G ,
~7.17!

whereR1 is given by Eq.~2.14! with b51, butBm andj, as
x above, are undetermined. Equations~7.14!–~7.17! are
04622
valid for the even-dimensional case of Sec. IV. For the o
dimensional case of Sec. V, the formal expressions are
same with the replacementR1(x,2m)→R1(x,2m11). Proof
of these results are similar to theb52 case, with orthono-
mality replaced by skew orthonormality and the kernelSN

(2)

replaced by the kernelSN
(1) of Eq. ~4.6!. In the even-

dimensional case~the odd-dimensional case is handled sim
larly!, we first write the ansatz in the form,

f2m~x!5A2m~x!cos@Q2m~x!1j1~x!#, ~7.18!

f2m11~x!5A2m11~x!cos@Q̄2m~x!1j2~x!#, ~7.19!

allowing for different forms for the even and odd-order pol
nomials. The integral representations below will prove th
the zeros off2m(x) have the densityR1(x,2m), giving
thereby the integrated density in the phase in Eq.~7.14!.
Similarly zeros of f2m11(x) have the same densit
R1(x,2m), except for the density of an additional zero that
absorbed inj2(x); thus Q̄2m(x)5Q2m(x) as in Eq.~7.17!.
The integrated functionsc2m(x) andc2m11(x) are obtained
by partial integrations, givinginter alia an additional factor
@pR1(x,2m)#21 in the amplitudes. Skew orthogonality give
j1(x)5j2(x), while evaluation ofR1(x)5SN

(1)(x,x) gives
A2m(x)A2m11(x)5pR1(x,2m)]R1(x,2m)/]m. Writing
A2m(x)5pBm(x)R1(x,m), we get Eqs.~7.14!–~7.17! with
j(x) satisfying the conditions~7.9! for x(x). The skew nor-
mality is automatically satisfied to the leading order. T
kernelSN

(1) is now given by

SN
(1)~x,x1Dx!5E

0

N/2

@f2m~x!c2m11~x1Dx!

2f2m11~x!c2m~x1Dx!#dm

5E
0

N/2]R1~x,2m!

]m
cos„pR1~x,2m!Dx…dm

5
sin„pR1~x,N!Dx…

pDx
, ~7.20!

which, on takingN→` limit, gives the universal resul
~4.14! for b51.

The asymptotic forms for theb54 type weighted skew-
orthonormal polynomialsf j (x) are given by

f2m~x!5Cm~x!cosF2pE
2`

x

R1~x8,m!dx81z~x!G ,
~7.21!

f2m11~x!5@2pCm~x!R1~x,m!#21

3
]R1~x,m!

]m
sinF2pE

2`

x

R1~x8,m!dx81z~x!G ,
~7.22!
1-14
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f2m8 ~x!522pCm~x!R1~x,m!

3sinF2pE
2`

x

R1~x8,m!dx81z~x!G ,
~7.23!

f2m118 ~x!5@Cm~x!#21
]R1~x,m!

]m

3cosF2pE
2`

x

R1~x8,m!dx81z~x!G ,
~7.24!

where R1(x,m) is given by Eq. ~2.14! with b54 while
Cm(x) and z(x) are undetermined withz(x) satisfying the
conditions ~7.9! for h(x). We have used the definitio
f j (x)5(gj )

21/2@w(x)#1/2t j (x) instead of Eq.~6.3! with unit
normalization in Eq.~6.2!. The proof of Eqs.~7.21!–~7.24! is
almost the same as that of Eqs.~7.14!–~7.17!. Starting with
the ansatz in Eqs.~7.18!, ~7.19!, we make the following
changes. The integral representations below will prove t
for b54, f2m , and f2m11 have doubly degenerate zero
~except for one extra zero inf2m11) so that we get integrals
of 2R1(x,m) instead ofR1(x,2m) for Q2m5Q̄2m . We have
additional factors ofR1 in f j8 ~instead ofR1

21 as in c j ),
since partial differentiation is used. FromR1(x)5S2N

(4)(x,x),
we get A2m(x)A2m11(x)5@2pR1(x,m)#21]R1(x,m)/]m.
Writing A2m(x)5Cm(x) gives then Eqs.~7.21!–~7.24!. The
kernelS2N

(4) of Eq. ~6.4! is now given by

S2N
(4)~x,x1Dx!5

sin„2pR1~x,N!Dx…

2pDx
, ~7.25!

which gives, forb54, the universal result~6.10! in the limit.
We have assumed here~as well as forb51 above! that

thegj are positive. When thegj are negative,ugj u21/2 should
be used in the definition off j with change of sign in eithe
f2m or f2m11 ~as in theb54 case of the associated La
guerre weight function!. Moreover, sinceg2m5g2m11, alter-
native expressions for the skew-orthonormal functionsf j (x)
involving other powers of thegj are possible. The ansat
~7.14!–~7.17! and Eqs.~7.21!–~7.24! are consistent with the
asymptotic results given in Secs. IV, VI, respectively, forb
51,4 for the entire Jacobi family of weight functions. F
these weight functions, theBm andCm are easily determined

Bm~x!}@R1~x,2m!#21/2
]R1~x,2m!

]m
, ~7.26!

Cm~x!}@R1~x,m!#21/2
]R1~x,m!

]m
, ~7.27!

the proportionality constant being (4m)21/2, 221, 221/2

for Bm(x) and 221, m1/2, 225/4 for Cm(x), respectively,
for the Jacobi, associated Laguerre, and Hermite cases.

As discussed in Secs. IV, VI, Eqs.~7.16!, ~7.21! have
additional constant terms that contribute rapidly oscillat
terms in Eqs.~7.20!, ~7.25! without affecting the final uni-
versal results. Forb54, the extra term in Eq.~7.21! arises
04622
t,

because, as discussed below, the even-order polynom
have complex zeros whose imaginary parts become smal
largem; in this case 2R1(x,m) is the density of the real part
of the zeros.

We now turn to the integral representations for the th
types of polynomials. These are given as averages over
trix ensembles, and will be useful in deriving the abo
asymptotic forms rigorously. We define the average ofF with
respect to the eigenvalue distribution~2.2! for givenb, N as

^F~x1 , . . . ,xN!&b,N5E . . . E F~x1 , . . . ,xN!

3Pb,N~x1 , . . . ,xN!dx1 . . . dxN .

~7.28!

We consider monic polynomials, i.e., polynomials with hig
est coefficient unity. Then the orthogonal polynomials, a
propriate forb52, are given@16,12# by

pj~x!5K )
k51

j

~x2xk!L
2,j

. ~7.29!

The skew-orthogonal polynomials, appropriate forb51
~even-dimensional case!, are given by

q2m~x!5K )
k51

2m

~x2xk!L
1,2m

, ~7.30!

q2m11~x!5K S x1 (
k51

2m

xkD )
k51

2m

~x2xk!L
1,2m

. ~7.31!

For b51 ~odd-dimensional case!, we have

q2m~x!5K )
k51

2m11

~x2xk!L
1,2m11

2Cm , ~7.32!

q2m11~x!5K S x1 (
k51

2m11

xkD )
k51

2m11

~x2xk!L
1,2m11

,

~7.33!

valid for m50,1, . . . ,(N23)/2. Here Cm is determined
from the condition~5.1!. qN21 is given ~in the nonmonic
form! by

qN21~x!5

K )
k51

N21

~x2xk!L
1,N21

E dxw~x!K )
k51

N21

~x2xk!L
1,N21

. ~7.34!

For b54, the skew-orthogonal polynomials are

t2m~x!5K )
k51

m

~x2xk!
2L

4,2m

, ~7.35!
1-15
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t2m11~x!5K S x12(
k51

m

xkD )
k51

m

~x2xk!
2L

4,2m

.

~7.36!

A proof of these integral representations is outlined in A
pendix B. Note that the above averages for all threeb can be
written in terms of det(x2H) and (trH)det(x2H) averaged
over the matrix ensemble ofH. We mention moreover that
in a recent unpublished work, Eynard@13# has also obtained
Eqs.~7.30!, ~7.31!, ~7.35!, and~7.36!.

We finally give a heuristic proof, needed in the abo
ansatz, of the relation between the density of zeros of
polynomials and the level density of the corresponding
sembles. It is known that the orthogonal polynomialspj (x)
have real zeros@16#. Our numerical studies indicate that th
zeros of the skew-orthogonal polynomialsq2m(x),q2m11(x)
and t2m11(x) are also real, while those of thet2m(x) are
complex, having small imaginary parts for largem and hence
doubly degenerate real parts. To find the density of zeros
take the eigenvalue spectrum$xk% to be ordered~i.e., x1
<x2<x3 . . . ) and write xk5^xk&1dxk . The spectrum of
the average eigenvalues$^xk&% has asymptotically the den
sity R1(x). The fluctuationsdxk are small@2#, spanning over
a few spacings@i.e., ^dxkdxl&'„R1(x)…22 for k,l not too far
apart#; the dxk then can be ignored in the leading appro
mations in Eqs.~7.29!–~7.36!. Thus, for b52, pj (x)
.P(x2^xj&), giving thereby the zeros as^xj& with the den-
sity R1(x, j ). For b51, we have similarly the density
R1(x,2m) for the zeros ofq2m(x) with an additional term for
the zero at(^xk& for q2m11(x). For b54, the leading ap-
proximations fort2m(x) in Eq. ~7.35! gives doubly degener
ate zeros at̂xk& with density 2R1(x,m), while t2m11(x) has
an additional term corresponding to the zero at (22(^xk&).
Sincet2m(x) is positive definite, the zeros oft2m(x) must be
complex with small imaginary parts for largem.

VIII. CONCLUSION

The universality of energy-level fluctuations, observed
a wide range of physical systems, was first considered
Fox and Kahn@11# for the unitary ensembles and later e
tended by Dyson@7# to the orthogonal and symplectic en
sembles. Dyson conjectured that ‘‘the local statistical pr
erties of the eigenvalues become universal proper
independent of the global eigenvalue distributions’’ in t
limit of large dimensionality. We have established the univ
sality rigorously for the Jacobi class of weight functions a
via an ansatz for more general weight functions. We h
also shown that the local properties are stationary, being
dependent of the location in the spectrum. Our proof re
on a systematic study of the skew-orthogonal polynom
and their asymptotic forms for the Jacobi class~including the
associated Laguerre and Gaussian cases!. For the more gen-
eral weight funtions our ansatz for the asymptotic polynom
als relies on a heuristic derivation of the density of zeros
the polynomials. The matrix-integral representations of
polynomials—orthogonal as well as skew orthogonal one
appear to be promising for rigorous studies in the gen
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case. We have also given a formalism for deriving the~non-
universal! level density without using the polynomia
method.

We believe that the concept of skew orthogonality will
useful for other random-matrix systems and in other c
texts. The local correlation functions have universal prop
ties also for the Brownian-motion matrix ensembles@7,17#,
viz., ensembles interpolating between the invariant on
These ensembles are useful in the studies of small symm
breaking in quantum chaotic systems@18#. In the GOE-GUE
@23# and GSE-GUE@24# interpolations, the concept of skew
orthogonality has been implicitly used. Similarly polynom
als on the unit circle are used in the study of circular e
sembles@17,19,21#. The skew-orthogonal polynomials ma
be useful in the study of other Brownian-motion ensembl
We also believe that new methods of semiclassical quant
tion @25# of chaotic systems can be developed using ske
orthogonal functions as tools.
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APPENDIX A: PROOF FOR JACOBI
SKEW-ORTHOGONAL POLYNOMIALS

In this appendix we prove the Jacobi results for the ske
orthogonal polynomials given in Secs. IV, VI forb51,4,
respectively.

We start withb51. Sinceqj (x) is a polynomial of order
j, the weighted polynomialsf j (x)5wa,b(x)qj (x) can be
written, without loss of generality, as

f j~x!5g j
( j )wa,b~x!$Aj Pj

2a11,2b11~x!2Bj 22Pj 22
2a11,2b11~x!%

1 (
k50

j 21

gk
( j )fk~x!, ~A1!

valid for j >1, f0(x) being wa,b(x). The gk
( j ) are the ex-

pansion coefficients, and theAj ,Bj are given in Eqs.~4.26!–
~4.27!. We choose

g2m
(2m)5~A2m!21, g2m11

(2m11)51, ~A2!

to fix the leading coefficient in theqj (x). Then using Eqs.
~4.4!, ~4.28!, we have

c j~x!5g j
( j )wa11,b11~x!Pj 21

2a11,2b11~x!1 (
k50

j 21

gk
( j )ck~x!,

~A3!

valid for j >1, while c0(x) is given by Eq.~4.23!. From the
orthogonality of the Jacobi polynomials we have

E wa11,b11~x!Pj
2a11,2b11~x!fk~x!dx

5E w2a11,2b11~x!Pj
2a11,2b11~x!qk~x!dx50,

~A4!
1-16
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for k50, . . . ,j 21. Using this and the skew-orthogonali
relation ~4.5!, we find that

gk
(2m12)50, ~A5!

for k5” 2m,2m12, and

gk
(2m11)50, ~A6!

k5” 2m,2m11. Moreover, sinceg2m
(2m11) is arbitrary ~as

skew orthogonality is not affected!, we choose it to be zero
and then Eq.~A6! is valid for k52m also. Thusg2m

(2m12)
l

n
pl
F

04622
[g2m is nonzero, giving thereby Eqs.~4.20!, ~4.22!. The
skew orthogonality ofq2m11(x) andq2m12(x) gives

g2m5
h2m11

2a11,2b11

h2m21
2a11,2b11

A2m11

A2m12

A2m

B2m21
5

B2m

A2m12
, ~A7!

and hence Eq.~4.25!, the last step in Eq.~A7! following
from Eq. ~A9! below. Using thegk

( j ) in Eq. ~A1! gives the
f j (x) in Eqs. ~4.19!, ~4.24! and then the normalization
~4.21! is obtained from Eqs.~4.19!, ~4.20!. Finally, the rela-
tion ~4.28! is proved from
E
21

1

dxwa11,b11~x!Pj
2a11,2b11~x!

d

dx
@wa11,b11~x!Pk

2a11,2b11~x!#

52E
21

1

dxwa11,b11~x!Pk
2a11,2b11~x!

d

dx
@wa11,b11~x!Pj

2a11,2b11~x!#, ~A8!
which is nonzero only foru j 2ku51. Now, doing the inte-
grals in Eqs.~A8! for u j 2ku51 in terms ofhj

2a11,2b11 and
kj

2a11,2b11 , we find

Aj52~ j 1a1b11!
kj 21

2a11,2b11

kj
2a11,2b11

, Bj5
hj 11

2a11,2b11

hj
2a11,2b11

Aj 11 ,

~A9!

and hence Eqs.~4.26!, ~4.27!. This completes the proof of al
the results~4.19!–~4.28!.

For associated Laguerre and Hermite weight functio
one can directly follow the above procedure, or more sim
take the limits of the Jacobi results as discussed below.
associated Laguerre, note first that

wa~x!5 lim
b→`

22a2bbawab~122b21x!, ~A10!

L j
(a)~x!5 lim

b→`

Pj
a,b~122b21x!, ~A11!

kj
(a)5 lim

b→`
S 2

2

bD j

kj
a,b , ~A12!

hj
(a)5 lim

b→`

ba11

2a1b11
hj

a,b . ~A13!

Thus for skew-orthogonal functions we have~in terms of the
Jacobi skew-orthogonal functionsf j

a,b ,c j
a,b),
s
y
or

f j~x!5 lim
b→`

~21! j22b11/2baf j
a,b~122b21x!,

~A14!

c j~x!5 lim
b→`

~21! j 2122b21/2ba11c j
a,b~122b21x!,

~A15!

giving thereby Eqs.~4.37!–~4.46!. Similarly, for the Hermite
case, note that~with j 52m,2m11)

e2x2/25 lim
a→`

wa,aS x

A2a
D , ~A16!

H j~x!5 lim
a→`

2 j j !a2 j /2Pj
a,aS x

Aa
D , ~A17!

kj5 lim
a→`

2 j j !a2 j kj
a,a , ~A18!

hj5 lim
a→`

~2 j j ! !2a2 j 11/2hj
a,a , ~A19!

f j~x!5 lim
a→`

22m~2m!! ~2a!2 j /2f j
a,aS x

A2a
D , ~A20!

c j~x!5 lim
a→`

22m~2m!! ~2a!2( j 21)/2c j
a,aS x

A2a
D ,

~A21!
1-17
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giving the Hermite results~4.54!–~4.59!.
For b54 with the Jacobi weight function, we expan

t j8(x) as

t j8~x!5Pj 21
a,b ~x!1 (

k50

j 21

hk
( j )tk8~x!, ~A22!

so that Eq.~6.17! gives

t j~x!5
2

j 1a1b21
@D j Pj

a,b~x!1Ej Pj 21
a,b ~x!1F j Pj 22

a,b ~x!#

1 (
k50

j 21

hk
( j )tk~x!. ~A23!

Then the orthogonality of thePj
a,b and the skew orthogonal

ity of the t j give

hk
(2m)50, ~A24!

for k5” 2m22, and

hk
(2m11)50, ~A25!

for k5” 2m. Also h2m
(2m11) , being arbitrary, is chosen to b

zero. Thush2m22
(2m) [h2m is the only nonzero coefficient, giv

ing thereby Eqs.~6.13!–~6.16!. The skew orthogonality of
t2m and t2m21 gives

h2m5
1

g2m22
F 2D2m21

2m1a1b22
h2m21

a,b

2
2F2m

2m1a1b21
h2m22

a,b G , ~A26!

while the normalization is given by

g2m5F 2D2m

2m1a1b21
h2m

a,b2
2F2m11

2m1a1b
h2m21

a,b G ,
~A27!

confirming thereby Eqs.~6.21!, ~6.22!. To prove the Jacob
result ~6.17!, we note that the first step is given in a diffe
ential form in Refs.@16,26#, while for the second step we us
@26#
04622
~2 j 1a1b!Pj
a,b21~x!5~ j 1a1b!Pj

a,b~x!

1~ j 1a!Pj 21
a,b ~x!, ~A28!

~2 j 1a1b!Pj
a21,b~x!5~ j 1a1b!Pj

a,b~x!2~ j 1b!Pj 21
a,b ~x!.

~A29!

This completes the proof of Eqs.~6.13!–~6.22!.
The associated Laguerre results~6.33!–~6.38! derive di-

rectly by using the limits~A10!–~A13! in Eqs.~6.13!–~6.22!,
while the Hermite results~6.46!–~6.49! derive from the lim-
its

e22x2
5 lim

a→`

wa,a~xA2/a!, ~A30!

H j~xA2!5 lim
a→`

2 j j !a2 j /2Pj
a,a~xA2/a!. ~A31!

APPENDIX B: PROOF OF MATRIX-INTEGRAL
REPRESENTATIONS

In this appendix we outline a proof of the matrix-integr
representations~7.29!–~7.36! of the polynomials. The Van-
dermonde determinant~2.3! and its fourth power can be writ
ten as@1#,

DN~x1 , . . . ,xN!5det@xm
N2n#m,n51, . . . ,N , ~B1!

@DN~x1 , . . . ,xN!#45det@xm
2N2n ,~2N

2n!xm
2N2n21#m51, . . . ,N,n51, . . . ,2N .

~B2!

For b52, Eq.~7.29! represents orthogonal polynomials wi
the weightw(x), if

E xkpj~x!w~x!dx50, ~B3!

for k50,1, . . . ,j 21. Using Eqs.~2.2!, ~7.28!, and ~7.29!
along with Eqs.~2.3!, ~B1!, we find that the integral in Eq
~B3! is proportional@12# to
E dx1 . . . E dxj 11~xj 11!kD j~x1 , . . . ,xj !D j 11~x1 , . . . ,xj 11! )
m51

j 11

w~xm!

5
1

~ j 11!! E dx1 . . . E dxj 11S (
P

eP~xi j 11
!kD j~xi 1

, . . . ,xi j
! DD j 11~x1 , . . . ,xj 11! )

m51

j 11

w~xm!, ~B4!
1-18
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where (P is a summation over all permutation
(xi 1

, . . . ,xi j 11
) of (x1 , . . . ,xj 11) andeP(561) is the sign

of the permutation, equal to the change of sign inD j 11 after
the permutation. The summation term in Eq.~B4! can be
written as

(
P

eP~xi j 11
!kD j~xi 1

, . . . ,xi j
!

5~21! j detS x1
k x2

k . . . xj 11
k

x1
j 21 x2

j 21 . . . xj 11
j 21

. . . .

.. . . .

1 1 . . . 1

D ,

~B5!
n
i

04622
which is zero fork50,1, . . . ,j 21, proving thereby Eq.~B3!
and hence Eq.~7.29!.

For b51, we consider Eqs.~7.30!, ~7.31! for the even-N
case; a similar consideration would apply to Eqs.~7.32!–
~7.34! for the odd-N case. Theqj of Eqs.~7.30!, ~7.31! rep-
resent skew-orthogonal polynomials of theb51 type with
the weightw(x), if

E E dxdye~x2y!ykqj~x!w~x!w~y!50, ~B6!

for k50, . . . ,2m21 and also fork5 j for j 52m,2m11
both. The integrals in Eqs.~7.30!, ~7.31! involve
uDN(x1 , . . . ,x2m)u and therefore Mehta’s method of integr
tion @1# over alternate variables can be used. Forj 52m, the
integral in Eq.~B6! is proportional to
E dx1 . . . dx2m12e~x2m112x2m12!~x2m12!kS )
n51

2m

~x2m112xn!D uD2m~x1 , . . . ,x2m!u )
m51

2m12

w~xm!

5~2m!! E
x1<x2< . . . <x2m

dx1 . . . E dx2m12e~x2m112x2m12!~x2m12!kS )
m51

2m12

w~xm!DD2m11~x1 , . . . ,x2m11!

5
1

2

~2m!!

m! E dx1dx3 . . . dx2m11 detS 0 0 . . . x2m11
k Fk~x2m11!

x1
2m F2m~x1! . . . x2m

2m F2m~x2m11!

. . . . .

. . . . .

1 F0~x1! . . . 1 F0~x2m11!

D )
i 50

m

w~x2i 11!

5
1

2

~2m!!

m! ~m11!! E dx1dx3 . . . dx2m11 det1
x1

k Fk~x1! . . .

x1
2m F2m~x1! . . .

x1
2m21 F2m21~x1! . . .

. . . . . .

. . . . . .

1 F0~x1! . . .

2 )
i 50

m

w~x2i 11!, ~B7!
he

where in the second and third steps the above-mentio
Mehta’s method of integration over alternate variables
used andFk(x) is given by

Fk~x!5E
x

`

ykw~y!dy. ~B8!
ed
s
In the last step of Eq.~B7! all permutations of
(x1 ,x3 , . . . ,x2m11) have been used. The determinant in t
last step is zero fork50, . . . ,2m, proving thereby Eqs.~B6!
and ~7.30!. For j 52m11, the first integral in Eq.~B7! has,
in the integrand, the extra factor (x2m111(xn) so that
D2m11 in the second form is replaced by
1-19
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detS x1
2m11 . . . x2m11

2m11

x1
2m21 . . . x2m11

2m21

. . . . .

. . . . .

1 . . . 1

D 5S (
m51

2m11

xmDD2m11~x1 , . . . ,x2m11!. ~B9!

Then the second row in the determinant of the last step of~B7! is replaced byx1
2m11 ,F2m11(x1), . . . , other rows remaining

the same. Again Eq.~B6! for k50, . . . ,2m21,2m11 and hence Eq.~7.31! are verified.
For b54, Eqs.~7.35!–~7.36! represent the skew-orthogonal polynomials if

E dx$xkt j8~x!2kxk21t j~x!%w~x!50, ~B10!

for k50, . . . ,2m21 and also fork5 j for j 52m, 2m11 both. In this case we use Eq.~B2! in the joint-probability density
~2.2!. For j 52m, the integral in Eq.~B10! is proportional to

E dx1 . . . dx2mdx2m11H x2m11
k d

dx2m11
)
n51

m

~x2m112xn!22kx2m11
k21 )

n51

m

~x2m112xn!2J S )
m51

2m11

w~xm!D @Dm~x1 , . . . ,xm!#4

5E dx1 . . . dx2m11 detS 0 0 . . . x2m11
k kx2m11

k21

x1
2m 2mx1

2m21 . . . x2m11
2m 2mx2m11

2m21

. . . . . . .

. . . . . . .

1 0 . . . 1 0

D )
m51

2m11

w~xm!

5
1

~m11!! E dx1 . . . dx2m11 detS x1
k kx1

k21 . . .

x1
2m 2mx1

2m21 . . .

. . . . .

. . . . .

1 0 . . .

D )
m51

2m11

w~xm!, ~B11!

where the last step is by a permutation of all the variables in the first step. The determinant in the last step is again
k50, . . . ,2m, confirming Eq.~B10! and hence Eq.~7.35!. For j 52m11, we have the additional term (x2m1112(xn) with
)(x2xn)2. In this case the second row of both the determinants of Eq.~B11! are replaced by@x1

2m11 ,(2m11)x1
2m, . . . ,#, the

last determinant being then zero fork50, . . . ,2m21, and 2m11. Thus Eq.~7.36! is verified.
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